

AdaptC: Programming Adaptation Policies for
WSN Applications

Conference Paper

CISTER-TR-181132

2019/04/08

Shashank Gaur

Luís Almeida

Eduardo Tovar

Conference Paper CISTER-TR-181132 AdaptC: Programming Adaptation Policies for WSN Applications

© CISTER Research Center
www.cister.isep.ipp.pt

1

AdaptC: Programming Adaptation Policies for WSN Applications

Shashank Gaur, Luís Almeida, Eduardo Tovar

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: sgaur@isep.ipp.pt, lda@fe.up.pt, emt@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

Evolution in both hardware and software technologies has enabledWireless Sensor Networks(WSNs) to target a
multiplicity of domains.Programming for such advanced WSNs remains a challengingprocess for users, especially
as the WSN may need to makechanges as per outcomes from different scenarios during execution.Usually,
various adaptation policies are written while programmingsuch applications to enable changes. However it is
difficult for theprogrammer to anticipate changes for new scenarios. It also becomesdifficult to reuse these
adaptation policies. In this paper, wepropose AdaptC, an abstraction for such adaptation policies thatfacilitates re-
usability and expansion across various WSNs.We alsopresent concepts for the design and implementation of
AdaptC.We evaluate the abstraction for multiple use cases and compare itagainst existing work.

AdaptC: Programming Adaptation Policies forWSN Applications

Shashank Gaur
CISTER Research Centre, ISEP,

Polytechnic Institute of Porto

Porto, Portugal

sgaur@isep.ipp.pt

Luis Almeida
CISTER Research Centre, FEUP,

University of Porto

Porto, Portugal

lda@fe.up.pt

Eduardo Tovar
CISTER Research Centre, ISEP,

Polytechnic Institute of Porto

Porto, Portugal

emt@isep.ipp.pt

ABSTRACT

Evolution in both hardware and software technologies has enabled

Wireless Sensor Networks(WSNs) to target a multiplicity of do-

mains. Programming for such advanced WSNs remains a challeng-

ing process for users, especially as the WSN may need to make

changes as per outcomes from diferent scenarios during execution.

Usually, various adaptation policies are written while programming

such applications to enable changes. However it is diicult for the

programmer to anticipate changes for new scenarios. It also be-

comes diicult to reuse these adaptation policies. In this paper, we

propose AdaptC, an abstraction for such adaptation policies that

facilitates re-usability and expansion across various WSNs. We also

present concepts for the design and implementation of AdaptC.

We evaluate the abstraction for multiple use cases and compare it

against existing work.

CCS CONCEPTS

• Computer systems organization → Sensor networks; Sen-

sors and actuators; • Software and its engineering→ Embed-

dedmiddleware;Abstraction, modeling andmodularity;Ap-

plication speciic development environments; •Networks→

Sensor networks; • Human-centered computing → Ubiquitous

and mobile computing systems and tools; • Hardware → Sensors

and actuators; Wireless integrated network sensors;

KEYWORDS

wireless sensor network, cyber-physical systems, macroprogram-

ming, applications, adaptation, internet of things, context-awareness

ACM Reference Format:

Shashank Gaur, Luis Almeida, and Eduardo Tovar. 2019. AdaptC: Program-

ming Adaptation Policies for WSN Applications. In The 34th ACM/SIGAPP

Symposium on Applied Computing (SAC ’19), April 8–12, 2019, Limassol,

Cyprus. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3297280.

3297304

1 INTRODUCTION

Wireless Sensor Networks can collect data from the environment

using diferent hardware nodes and select diferent actions based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

SAC ’19, April 8–12, 2019, Limassol, Cyprus

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3297304

on that data as deined by distributed software applications. Over

time, both the hardware nodes and the programming capabilities

have become more sophisticated. Due to better System on Chip

(SoC) solutions, today WSN nodes are capable of collecting com-

plex sensing data and also process such data before communicating

to the network itself. On the software front, advanced simulators

and programming support enable the user to express diverse goals

instead of worrying about low-level features for writing the ap-

plications. Recently, WSNs with such advanced capabilities are

considered part of the ecosystem of the Internet of Things (IoT),

fostering the development of wide Cyber-Physical Systems (CPS).

These advanced programming capabilities also open doors to ap-

plication programmers from a wide range of industries such as

agriculture [2, 20], healthcare [19], etc. In many CPS domains, such

as smart manufacturing, eicient use of WSN can directly inluence

eiciency and productivity. Hence, it is important to provide the

programmers with efective tools to focus on high-level concepts,

by avoiding the idiosyncrasies of traditional WSNs.

However, many features of programming WSNs are still lim-

ited to experts only. Programmers have to go through elaborate

software methodologies such as understanding of advanced simu-

lators or operating systems built to program WSNs. For example,

Contiki [13] has become one of the most popular operating sys-

tems for programming WSNs, which provides extensive libraries,

communication support, and multi-threading. Just to learn about

the features of Contiki and how to efectively use them requires a

signiicant efort from the programmer. In addition, programmers

need to obtain knowledge about the hardware nodes as well, which

is further complicated by the ever-growing list of manufacturers of

diferent WSN nodes.

Writing WSN applications is further complicated when there is

a need to adapt to changes in operational scenarios. Such scenarios

can include changes in physical parameters, such as location, or

system changes, such as availability of nodes, energy levels, etc. For

this purpose, programmers need to anticipate all possible future

scenarios and thus program actions to adapt accordingly.

In the past, many eforts were developed to simplify program-

ming for the WSN, e.g., via macroprogramming [22]. Other eforts

attempted at reducing the complexities in designing systems where

the hardware and software are closely integrated [11]. However,

constraints on both hardware and software capabilities prevented

applying these solutions to WSN nodes. Another efort aimed at

providing a complete software solution for situational-aware sys-

tems [25]. But there is a need to exchange data between diferent

applications and there is a lot of responsibility on end-user to man-

age the context. Conversely, there is not much efort in providing

abstractions for programming the sensor nodes so that WSNs can

https://doi.org/10.1145/3297280.3297304
https://doi.org/10.1145/3297280.3297304
https://doi.org/10.1145/3297280.3297304

SAC ’19, April 8–12, 2019, Limassol, Cyprus Shashank Gaur, Luis Almeida, and Eduardo Tovar

detect changes by themselves and directly adapt to those changes

without delving into low-level details.

One of the most promising recent work is T-Res [4]. T-Res pro-

vides a programming abstraction, specially tailored for the IoT

paradigm by providing data processing tasks for nodes. T-Res uses

CoAP operations for this, which allow coniguring applications on a

node and the interaction amongmultiple nodes. Themain drawback

of T-Res is no support for adaptations and re-usability, according to

changes in WSN or IoT nodes. Another similar work is PyFUNS [8],

which also enables reprogramming inWSNs. PyFUNS leverages IoT

based protocols such as Constrained Application Protocol (CoAP)

and IPv6 over Low-Power Wireless Personal Area Networks (6LoW-

PAN). PyFUNS can be used as a complementary tool, but it does

not provide support for adaptation in the application written by

the programmer.

Context-Oriented Programming (COP) is also another popular

efort to facilitate programmability of WSNs [18]. In embedded

systems research, there have been many eforts to evolve existing

programming solutions towards COP [6, 17, 21, 23, 24]. Recently

there have been eforts to add extra features to COP [5].

There is also some recent work focusing on providing support

for context-awareness [3]. Note that changing from one context

to another the application needs to change accordingly, too. But

there is still some opportunity to improve support to programmers

and end-users. These eforts still lack an easy way of writing adap-

tations policies. It lacks an adequate abstraction that could foster

re-usability.

In this paper, we study how a programmer would establish such

adaptation policies and we show the diiculties in achieving so.

In addition, we demonstrate the need for writing such adaptation

policies considering a couple use cases from diferent domains.

With the help of these use cases, we also examine essential features

to build a generic model. Based on that model, we propose a new

programming abstraction, named AdaptC, for writing continuous

and complex adaptation policies that can be reused and extended.

The main contributions of this paper are the following:

• Design features for setting continuous and complex adapta-

tion policies.

• A novel programming abstraction for adaptations that can

be used with languages such as nesC.

• Examples of the ability to reuse and extend the adaptation

policies written using the proposed abstraction.

This paper is composed as follows. Section II discusses design

features for adaptation with help of diferent use cases. Section III

showcases the programming of adaptation policies using a pseudo

code and analyzes the design features. Section IV proposes the

abstraction for writing the adaptation policies and showcases its

advantages. We conclude the paper by briely discussing the work

and its conclusions in Section V. Section VI inishes the paper with

remarks on future directions.

2 DESIGN FEATURES FOR ADAPTATIONS

In this section, we identify the design features which are critical in

deining the desired adaptation policies. These design features can

also express the complexities in writing these applications from

a programmer’s perspective. To express the design features we

propose the generic model in 1.

Functions and

Variables

Constraint

Objective Function

Adaptation at Ra

Or by Interesting

events

OutputInput

Figure 1: Generic Model for Design Features

This generic model is composed of several elements. Functions

and Variables represent all the relationships between diferent vari-

ables of the application that are relevant to the desired adaptation.

These relationships can either exist from design or can be obtained

with the progress of the application. Constraint describes the restric-

tions for the adaptations. Objective Function represents the desired

outcome for the user. There must be some relationship between

Constraint and Objective Function, but it is optional to have a direct

relationship.

The component on the right expresses the dynamics of the adap-

tation policy. Adaptations can either be carried out periodically at

a Rate of Adaptation or triggered by other events taking place in

the system. These other events are called Interesting Events in the

generic model. The user can tag diferent elements of the program

as Interesting Event and the adaptation will happen every time that

element of the program is triggered. These Interesting Event can

also impact on the Functions and Variables component. All these

changes are included in the next adaptation cycle.

To better explain the design features, we consider two diferent

use cases and try to apply the proposed model to these use cases.

2.1 Usecase 1 : GPS

Consider a use case in which a wildlife animal is tracked by a GPS-

enabled sensor node attached to the animal itself. Base stations are

deployed across the forest to collect the GPS data from the sensor

node on the animal. The primary objective is to sample the GPS at

a ixed rate and store the movements of the animal locally at the

node itself. Whenever a base station is encountered all the recorded

data can be transferred and then delivered to the user through

the base station. After this, the user also wants to assure that the

sensor node maintains suicient battery level to encounter the next

base station. To achieve that, the GPS polling rate must be adapted

according to various situations such as the speed of the animal,

other applications running on the same node, the amount of energy

left or any encounter with other animals. The programmer can

not anticipate the speed of the animal and program a GPS sensor

polling rate for all the possible situations. Also, some new events

which may afect such adaptation may be added later on. Hence,

there is a need to support continuous adaptation capabilities while

programming the goals.

This adaptation policy can be expressed, using pseudo-code, in

the following way:

For Speed(S) and BateryLevel(B):

Poll GPS with Rate(R)

AdaptC: Programming Adaptation Policies for WSN Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

so that BateryLevel(B) is always greater than Threshold ater

Time(t)

The variables in this use case are Speed of the animal(S), Battery

Level(B), Sampling Rate(R) and Time(t). There is a direct relation-

ship between how frequently the GPS is sampled(R) and the level

of the battery(B). This can be either pre-deined by the user based

on earlier studies [7, 9] or studied by the system over time. Here,

we can express it as B = f(R). This relationship helps to learn how

much B will be afected by changes in R. There is a constraint on

how much B can be afected. B should always be above a thresh-

old battery levels(BT), i.e. B ≥ BT . While the system must follow

the constraint, the user may desire that the polling rate must be

maximized in order to get as much as fresh GPS data. That would re-

quire a complex and continuous adaptation for this application and

maximizing R would be the objective function for this adaptation.

Function: B=F(R)

Constraint: B > BT

Objective: Max R

Adaptation at Ra

Or by Interesting

events

RB, R, F,t

Figure 2: Design Features for GPS Use Case

The user can decide a ixed sampling rate at which this objective

function should be solved, which will be the rate of adaptation(Ra).

Also, some interesting events within the program can also trigger

the adaptation. For example in this use case, these events can be An

encounter of another base station, Change in the number of other ap-

plications, Not able to get GPS position, Encounter of another wildlife

animal, etc. Figure 2 shows the design features for this use case.

2.2 Usecase 2 : HVAC

We consider a system for building automation such as Heating,

Ventilation, and Air-Conditioning (HVAC) [10, 14]. HVAC systems

are a common utility in modern infrastructures, such as oices,

shopping malls or industrial buildings. Typical HVAC systems have

diferent sensor nodes to monitor physical conditions such as tem-

perature, pressure, humidity in the various parts of the building.

According to user requirements for those physical parameters, cer-

tain actuation is performed on various cooling or heating devices or

any other actuators. In some HVAC systems, there is only one user

requirement such as maintaining a certain temperature. But in the

case of more complex buildings, the user might want to minimize

the cost of operations while satisfying multiple user requirements.

During the operation, the HVAC system should adapt to diferent

events to minimize the cost and provide suicient performance.

Also, adaptation is expected in other cases such as oices where

diferent occupants might have diferent requirements and their

behavior might afect the HVAC performance. Hence, it becomes

diicult for a programmer to write an application which can keep

up with all the above-mentioned factors and achieve its main goal.

Again using pseudo-code, we can express this adaptation policy

as follows:

For Volume(V) and Time(t):

Provide Power(P) to maintain Temperature(TF)

so that Cost of operation(C) isminimized over a time period(t)

The variables in this use case are Volume of the space(V), Power

Consumption(P), Temperature of the space(TF), Operational Cost(C)

and Time(t). There is a direct relationship between the temperature

being maintained(TF), the volume of the space(V) and the power

consumption(P). There is also a direct relationship between the

power consumption(P) over time(t) and the operational cost(C).

These can be either pre-deined by the user based on statistics or

studied by the system over time. Here, we can express these as TF
= f(V,P) and C = g(P,t). These relationships show which variables

can afect operational cost and how changing them can help in

achieving the objective of the user, i.e. minimizing operational

cost(min(C)). The constraint is on temperature since the system

must always maintain a suitable temperature as well. If the required

temperature isTS , then there can be some tolerance(δ) to minimize

operational cost. Hence, that would be the constraint for this use

case, i.e. TS − δ ≥ TF ≥ TS + δ . This would require a complex and

continuous adaptation and minimizing cost would be the objective

function for this application.

Concerning the dynamics of the adaptation, the user can decide

a ixed sampling rate at which this objective function should be

solved, which will the rate of adaptation(Ra). Also, some interesting

events within the program can also trigger the adaptation. For

example, in this use case, these events can be Change in the occupied

volume in the space, Body temperature of the occupants, Location of

the occupants, Interaction with outside environment when doors open

or close, etc. Figure 3 shows the design features for this use case.

Functions:

TF = f(V,P)

C = g(P,t)

Constraint: TS - δ > TF > TS + δ

Objective: Min C

Adaptation at Ra

Or by Interesting

events

PV, t, g, T'

Figure 3: Design Features for HVAC Use Case

3 PROGRAMMING ADAPTATION POLICIES

Let us focus on how a programmer would write adaptation poli-

cies for WSNs, with current state-of-practice approaches, using

the C language. In particular, let’s examine the use case 1 (GPS)

presented in the previous section, for which we provide the code

in the Listing 1. The relationship between the BatteryLevel and

the GPS polling rate is described by the Function in line 4, which

takes the Rate as input. In this function, we assume alpha is the

factor by which the GPS sampling rate afects the battery level.

In order to maintain the normal operations and the adaptation si-

multaneously, the programmer must create multiple threads. In

line 7, sensing_thread is the function that describes the nor-

mal behavior of the application using all the parameters provided

by the user. Another thread is required for adaptation, which is

called adaptation_thread in line 19. This function checks the Bat-

teryLevel using the earlier functions for current Rate. Then it gets

a new polling rate under the constraint of keeping BatteryLevel

above a threshold deined by the user. It uses haversine function to

calculate the speed from the GPS coordinates in line 24.

SAC ’19, April 8–12, 2019, Limassol, Cyprus Shashank Gaur, Luis Almeida, and Eduardo Tovar

One of the design features is that the adaptation must either

occur at a ixed rate or triggered by some interesting events across

the application. Hence, a third thread has to be created to trigger

adaptation at a ixed rate by using timers, which is deined in line 13.

In addition, the adaptation_thread must be called back inside all

the functions that may generate interesting events.

1 int Solve(Speed, BatteryLevelcurrent) {

2 // Calculate R using the solution for optimization

3 Return R; }

4 int Function(Rate) {

5 BatteryLevel = alpha∗Rate ;

6 return BatteryLevel ; }

7 void sensing_thread () {

8 while() {

9 timer = clock () ;

10 sleep (Rate) ;

11 GPS[time] = getGPS() ;}

12 Return 0; }

13 void timer_thread () {

14 while() {

15 timer_set (timer2 , Ra) ;

16 if (timer_expired (timer2)) {

17 adaptation_trigger = 1;}

18 Timer_reset(timer2) ; }}

19 void adaptation_thread () {

20 While() {

21 If (adaptation_trigger == 1) {

22 BatteryLevel = Function(Rate) ;

23 If (BatteryLevel < Batterythreshold) {

24 Speed = haversine (GPS[time−1:time]);

25 Rate = Solve(Speed,BatteryLevel) ;}

26 Timer_reset(timer2) // reset the timer

27 adaptation_trigger = 0; }}}

Listing 1: Pseudo-C code for GPS Use Case.

As shown in Listing 1, the pseudo-code for the adaptation in-

cludes threads, timers, function dependencies, etc. With dynamic

and complex adaptation policies it becomes diicult for the pro-

grammer to write the code. For example, if the programmer wants

to initiate the adaptation at a ixed time every day or according to

the time stamps of particular data in addition to the rate of adapta-

tion, then the programmer must start a new timer for that purpose.

That creates additional complexity when the programmer wants to

add new interesting events over time, change the relationships be-

tween variables, or change the solution itself. For all these changes,

the programmer must dive into the low-level details which are not

always necessary for each change. If the programmer just wants

to add a new time-stamp to trigger the adaptation, it should not

require extensive knowledge of timers and threads in the whole

program. Hence, there is a need for an abstraction that can enable

the programmer to achieve goals without delving for every low-

level detail. Such an abstraction did not exist until now, to the best

of the authors’ knowledge, and it has further implications since it

also brings the ability to reuse and extend adaptation policies.

4 PROPOSED ABSTRACTION

In this section we propose, AdaptC, a high-level programming

abstraction that can enable not only ease in programming but also

ease in debugging and re-usability of the adaptation policies written

by the programmer. One of the examples of the complexities with

the current state of practice, shown in the code in Listing 1, is that

the interesting events are not integrated into the code. Hence the

programmer would have to always remember which functions to

check for the adaptation. AdaptC can provide a better structure to

write complex adaptation policies for various applications.

1 Block T r i g g e r T {

2 / / Combina t i on o f d i f f e r e n t t r i g g e r s

3 / / a f i x e d r a t e

4 Use c on s e c u t i v e _ t ime 10 s

5 / / a t f i x e d sy s t em t ime

6 Use t ime_stamp 0 0 : 0 0

7 / / u s e d i f f e r e n t f l a g s o r e v e n t s

8 Use f l a g s }

9 B lock S o l u t i o n S {

10 Use Func t i on f

11 Use Func t i on g

12 Use Con s t r a i n t

13 Uses V a r i a b l e s a b c d

14 / / s o l v e

15 return a }

16 B lock Con s t r a i n t B {

17 / / d e f i n e t h e c o n s t r a i n t

18 return t r u e / f a l s e }

19 B lock Func t i on f {

20 Use v a r i a b l e s b , c , d

21 / / o p e r a t i o n

22 return b }

23 Block Func t i on g {

24 Use v a r i a b l e s a , c

25 / / o p e r a t i o n

26 return a }

27 / / Adap t a t i o n h e r e

28 Block Adap ta t i on {

29 I f T r i g g e r = Ac t i v e :

30 So l v e a

31 return a }

Listing 2: Abstract Pseudo-C code

Listing 2 shows an implementation of AdaptC.We divide the code

into ive blocks based on the proposed generic model of the design

features described in Section II. These components are called blocks

and named as follows: Function, Constraint, Trigger, Adaptation, and

Solution.

• The Trigger block in line 1 allows the programmer to deine

when the adaptation must occur. In this block, the program-

mer can have ixed timers, periodic timers, or lags across the

application. Hence, the programmer can have a lag named

interestingEvent, use it across the complete application and,

whenever that lag is raised the adaptation is triggered.

• The second block is Constraints in line 16. It allows the

programmer to deine one or many constraints that afect

the adaptation. This block will return a boolean result of true

or false respectively, depending on whether the constraints

are satisied or not.

• Next block, expressed in line 19, is the Function block or

possibly a set of the block. This set of blocks deines all the

variables and relationships between them. The number of

function blocks depends, by convenience, on how to deine

multiple relationship between diferent variables. There can

also be local variables used in these blocks and this allows

ease of access in deining these relationships.

AdaptC: Programming Adaptation Policies for WSN Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

• The next block is the Adaptation block in line 28. This block

basically checks for the trigger and if the trigger is active it

calls the next block named Solution.

• Finally, the Solution block in line 28 solves the objective

function subject to the deined constraints. Once a solution

is achieved, the block returns it to the Adaptation block.

As an example, Listing 3 shows AdaptC applied to the HVAC

use case as following.

1 Block Trigger_HVAC {

2 / / Combina t i on o f d i f f e r e n t t r i g g e r s

3 / / a f i x e d r a t e

4 Use c on s e c u t i v e _ t ime 10 s

5 / / a t f i x e d sy s t em t ime

6 Use t ime_stamp 0 0 : 0 0

7 / / u s e f l a g s o r e v e n t s a c r o s s a p p l i c a t i o n

8 Use f l a g s }

9 / / The s o l t u i o n f o r d e s i r e d g o a l s

10 Block Solut ion_COST {

11 c a l l Function_TEMP ()

12 c a l l Function_COST ()

13 / / c a l c u l a t e r e q u i r e d power

14 return Power }

15 B lock Constraint_TEMP {

16 / / d e f i n e t h e c o n s t r a i n t

17 i f T_ { S } + \ d e l t a <TEMP<T_ { S } − \ d e l t a :

18 return t r u e

19 e l se

20 return f a l s e

21 }

22 B lock Function_TEMP {

23 Use Volume , Power

24 / / c a l c u l a t e Tempe ra tu r e

25 return TEMP }

26 Block Function_COST {

27 Use Time , Power

28 / / c a l c u l a t e COST

29 return COST }

30 / / Adap t a t i o n h e r e

31 Block Adapta t ion_Power {

32 I f T r i g g e r = Ac t i v e :

33 a = Solut ion_COST ()

34 return a }

Listing 3: Abstract Pseudo-C code for HVAC Use Case

5 PRELIMINARY EVALUATION

To validate the feasibility of the proposed abstraction, AdaptC, we

implemented it for Contiki using nesC [16] and Python to support

only basic functionalities as a proof of concept. For a concrete

example, we implement the HVAC application using AdaptC andwe

compare it against an implementation following state-of-practice

approaches. In this section, we discuss the technical details of that

implementation and highlight some characteristics that help in

understanding the beneits of the AdaptC. The same characteristics

can also apply to many other applications such as smart homes,

and smart irrigation systems, whose details we do not discuss for

the purpose of conciseness.

code
example.nc

hvac.nc
src

parse.py
src

compile.py
hvac_contiki.c

lib
contiki files

User Inputs

Blcoks and Flags

identified

Create executable

Contiki code

Figure 4: Implementation of proposed abstraction

AdaptC is implemented to parse the nesC code provided by the

user and identify diferent blocks as mentioned in Listing 2. Then

those are compiled into Contiki code. All of this is done using

python scripts. The implementation is explained in Figure 4. To

use the AdaptC, a programmer must obtain the repository. It is

divided into three directories, code, lib, and src. The code folder

contains already written examples. The programmer can ind iles

such as of example.nc written in nesC equivalent to the abstract

pseudo code showed earlier in Listing 2. This can be modiied for

the intended application by the programmer. For example, in the

case of the HVAC application, the example.nc code can be modiied

according to Listing 3. The lib folder contains libraries built for

the compilation of example.nc code into a workable Contiki code.

That code can be executed inside Contiki or deployed using Contiki.

These libraries are written in C and modiied from the Contiki

repository available on GitHub [12]. The src folder contains few

scripts written in python. The parser script reads the code provided

to by the programmer such as example.nc and identiies each block

in it. The compile script uses the iles from the lib directory to create

the Contiki code and add each block from example.nc ile in it.

With the help of AdaptC it becomes easier to reuse the same

adaptation policies for diferent nodes, by just changing input pa-

rameters. For example, in the HVAC application, the programmer

sets a constraint on the temperature which is afected by volume

and power. Later on, another programmer might want to use the

same policy in an area where the temperature is afected by other

parameters such as the number of people, movement, etc. Hence,

the second programmer can easily reuse the same adaptation policy

by just slightly changing the input parameters. In addition to being

reused, the applications are required to evolve with new require-

ments as well. For example, in wildlife monitoring using GPS sensor,

the programmer might wish to monitor the health condition of the

animal. This can add more interesting events such as any rest taken

by the animal, elevation reached during the day, etc., and that could

be easily achieved by adding these new events in the Trigger block.

Basic

Demands

Rapid

Development

Easy

Maintenance

Reliability Portable Efficient Learnable Reusable Pedagogic

Value

Proposed

Abstraction

✓ ✓ ! ✓ ! ✓ ✓ ✓

(AdaptC)

Figure 5: User demands for programming languages

A programming language must meet a few basic demands of the

user community. We evaluate our abstraction, AdaptC, for those

basic demands provided by [1] as shown in Figure 5. We have

already discussed the re-usability earlier. The ability to extend

SAC ’19, April 8–12, 2019, Limassol, Cyprus Shashank Gaur, Luis Almeida, and Eduardo Tovar

the code implies the ease of maintenance. Also using AdaptC the

programmer is able towrite diverse goals quickly since it takes away

the complexities of timers, threads etc. Hence that enables Rapid

Development. In addition, AdaptC allows adaptation policies to

work on diferent nodes, hence the support of portability is provided.

The design features and their modularity contribute to the ability

to learn as it is easier to understand the role of each feature and

their dependencies. Rest of the properties, namely Reliability and

Eiciency still remains to be evaluated.

These are preliminary evaluations based on software engineer-

ing concepts. Since we are not aware of any existing abstractions

for adaptation policies to build WSNs, a direct comparison was

not possible. For further evaluation of the performance, we plan to

implement it with diferent applications. With those implementa-

tions, a more detailed evaluation of software engineering elements

such as the impact on variables, lines of code and functions will be

possible.

Figure 6: Comparison with existing abstractions

Despite the absence of macroprogramming work speciically

for adaptation policies, there is still a great amount of work to

support the programmer. Thus, we try to compare the AdaptC

with some of the relevant state of the art as shown in Figure 6. We

selected two recent frameworks aiming at providing some sense of

adaptation in WSNs and re-usability for the applications, namely

T-Res [4] and PyFUNS [8]. Both aim at providing support to the

programmer to write applications without the knowledge of low-

level features, i.e., they are hardware agnostic. However, there is

no support to write adaptations for the applications that change

at run-time, i.e., evolvable applications. While AdaptC is able to

support both changes in the node hardware and application code.

6 CONCLUSION

In this paper, we have introduced the problems in writing complex

adaptation policies for Wireless Sensor Networks. We have demon-

strated this by drawing on two diferent use cases. We have also

exhibited the need of diferent user requirements. Drawing from

the two diferent use cases, we have built a generic model which

illustrates the complexities in adaptations.

Following the generic model for adaptation policies, we deined

a new programming abstraction, AdaptC, that allows a programmer

to write such policies without explicit dependence on low-level

node features. In addition, we have implemented one of the use

cases with and without abstractions in Contiki and nesC, and in

both languages, it has ofered the desired adaptability.

Our futurework shall examine this abstraction further and evolve

towards developing a complete macroprogramming solution with

AdaptC for the Context-AwareWireless Sensor Network. The imme-

diate next steps would be to extend the implementation of AdaptC

to support existing contributions for macroprogramming [4, 8]. We

also plan on extending this abstraction for heterogeneous devices.

With that, the aim is to build a system which can adapt to changes

in both hardware and software requirements of the user.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Luca Mottola for his signiicant

contribution to the AdaptC. The authors would also like to thank

the anonymous referees of SAC 2019 for their valuable comments

and helpful suggestions.

This work was partially supported by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Technology),

within the CISTER Research Unit (CEC/04234); also by the Opera-

tional Competitiveness Programme and Internationalization (COM-

PETE 2020) under the PT2020 Partnership Agreement, through the

European Regional Development Fund (ERDF), and by national

funds through the FCT, within project(s) POCI-01-0145-FEDER-

029074 (ARNET); and also by the EU ECSEL JU under the H2020

Framework Programme, within JU grant nr. 737422 (SCOTT project,

www.scottproject.eu).

REFERENCES
[1] [n. d.]. Evaluating Programming Languages. https://courses.cs.washington.edu/

courses/cse341/02sp/concepts/evaluating-languages.html
[2] Pooyan Abouzar, David G Michelson, and Maziyar Hamdi. 2016. RSSI-based

distributed self-localization for wireless sensor networks used in precision agri-
culture. IEEE Transactions on Wireless Communications 15, 10 (2016), 6638ś6650.

[3] Mikhail Afanasov, Luca Mottola, and Carlo Ghezzi. 2014. Context-oriented
programming for adaptive wireless sensor network software. In 2014 IEEE Inter-
national Conference on Distributed Computing in Sensor Systems. IEEE, 233ś240.

[4] Daniele Alessandrelli, Matteo Petraccay, and Paolo Pagano. [n. d.]. T-res: Enabling
reconigurable in-network processing in iot-based wsns. In IEEE International
Conference on Distributed Computing in Sensor Systems, 2013.

[5] Tomoyuki Aotani and Gary T Leavens. 2016. Towards Modular Reasoning
for Context-Oriented Programs. In Proceedings of the 18th Workshop on Formal
Techniques for Java-like Programs. ACM, 8.

[6] Jakob E Bardram. 2005. The java context awareness framework (JCAF)śa service
infrastructure and programming framework for context-aware applications. In
International Conference on Pervasive Computing. Springer, 98ś115.

[7] Fehmi Ben Abdesslem, Andrew Phillips, and Tristan Henderson. 2009. Less is
More: Energy-eicient Mobile Sensing with Senseless. In Proceedings of the 1st
ACM Workshop on Networking, Systems, and Applications for Mobile Handhelds
(MobiHeld ’09). ACM, 61ś62.

[8] Stefano Bocchino, Szymon Fedor, and Matteo Petracca. 2015. Pyfuns: A python
framework for ubiquitous networked sensors. In European Conference on Wireless
Sensor Networks. Springer, 1ś18.

[9] Aaron Carroll and Gernot Heiser. 2010. An Analysis of Power Consumption in a
Smartphone. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference (USENIXATC’10). USENIX Association, 21ś21.

[10] Amol Deshpande, Carlos Guestrin, and Samuel Madden. 2005. Resource-Aware
Wireless Sensor-Actuator Networks. IEEE Data Eng. Bull. 28, 1 (2005), 40ś47.

[11] Jean-Philippe Diguet, Yvan Eustache, and Guy Gogniat. 2011. Closed-loopśbased
self-adaptive Hardware/Software-Embedded systems: Design methodology and
smart cam case study. ACM Transactions on Embedded Computing Systems (TECS)
10, 3 (2011), 38.

[12] Adam Dunkels. 2003. The oicial git repository for Contiki, the open source OS
for the Internet of Things. Retrieved September 22, 2018 from https://github.
com/contiki-os/contiki

[13] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight
and lexible operating system for tiny networked sensors. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE, 455ś462.

[14] Milan Erdelj, Nathalie Mitton, Enrico Natalizio, et al. 2013. Applications of indus-
trial wireless sensor networks. Industrial Wireless Sensor Networks: Applications,
Protocols, and Standards (2013), 1ś22.

https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://courses.cs.washington.edu/courses/cse341/02sp/concepts/evaluating-languages.html
https://github.com/contiki-os/contiki
https://github.com/contiki-os/contiki

AdaptC: Programming Adaptation Policies for WSN Applications SAC ’19, April 8–12, 2019, Limassol, Cyprus

[15] Shashank Gaur, Raghuraman Rangarajan, and Eduardo Tovar. 2016. Extending
t-res with mobility for context-aware iot. In Internet-of-Things Design and Imple-
mentation (IoTDI), 2016 IEEE First International Conference on. IEEE, 293ś296.

[16] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David
Culler. 2003. The nesC Language: A Holistic Approach to Networked Embedded
Systems. SIGPLAN Not. 38, 5 (May 2003), 1ś11. https://doi.org/10.1145/780822.
781133

[17] Carlo Ghezzi, Matteo Pradella, and Guido Salvaneschi. 2010. Programming
language support to context-aware adaptation: a case-study with Erlang. In
Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 59ś68.

[18] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-oriented
programming. Journal of Object Technology 7, 3 (2008).

[19] Xin Hu, Rahav Dor, Steven Bosch, Anita Khoong, Jing Li, Susan Stark, and
Chenyang Lu. 2017. Challenges in Studying Falls of Community-dwelling Older
Adults in the Real World. In Smart Computing (SMARTCOMP), 2017 IEEE Interna-
tional Conference on. IEEE, 1ś7.

[20] Stepan Ivanov, Kriti Bhargava, and William Donnelly. 2015. Precision farming:
Sensor analytics. IEEE Intelligent systems 30, 4 (2015), 76ś80.

[21] Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. 2011. EventCJ: a
context-oriented programming language with declarative event-based context
transition. In Proceedings of the tenth international conference on Aspect-oriented
software development. ACM, 253ś264.

[22] Gian Pietro Picco Luca Mottola. 2011. Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art. 43, 3 (2011).

[23] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. Context-oriented
programming: A software engineering perspective. Journal of Systems and
Software 85, 8 (2012), 1801ś1817.

[24] Sanjin Sehic, Fei Li, and Schahram Dustdar. 2011. COPAL-ML: a macro language
for rapid development of context-aware applications in wireless sensor networks.
In Proceedings of the 2nd Workshop on Software Engineering for Sensor Network
Applications. ACM, 1ś6.

[25] Norha M Villegas. 2013. Context Management and Self-Adaptivity for Situation-
Aware Smart Software Systems. Ph.D. Dissertation. University of Victoria.

https://doi.org/10.1145/780822.781133
https://doi.org/10.1145/780822.781133

	Abstract
	1 Introduction
	2 Design Features for Adaptations
	2.1 Usecase 1 : GPS
	2.2 Usecase 2 : HVAC

	3 Programming Adaptation Policies
	4 Proposed Abstraction
	5 Preliminary Evaluation
	6 Conclusion
	Acknowledgments
	References

