
Panel Discussions



Chris Gill
Department of Computer Science and Engineering
Washington University in St. Louis, MO, USA 
cdgill@wustl.edu

Towards Bespoke Graceful Degradation
in Mixed-Criticality Systems (Panel Presentation)

6th International Workshop on Mixed-Criticality Systems (WMC)
at the 39th IEEE Real-Time Systems Symposium, Nashville, TN, USA
Tuesday, December 11th, 2018



Can We Manage Utilization Gain/Loss Gracefully?

n Nominal, overload, degraded ranges of utilization
» (increasing?) nominal utilization below criticality level Zi

» (maximum?) overload utilization at task’s designated level Zi

» (decreasing?) degraded utilizations at even higher levels

Task Ei Zi mi[0] mi[1] mi[2]
τ1 5 0 8 6 4
τ2 4 0 6 4 2
τ3 3 1 4 6 2
τ4 2 1 4 6 2
τ5 1 2 2 2 6

degraded
overload
nominal



n Can run same amount of work less frequently
» Orr et al. RTNS ’18 (linear FEM component of RTHS)
» Su et al., DATE ‘13, RTCSA ’14 (alternative periods)

n Can run less work in same amount of time
» Liu et al. RTSS 2016; Huang et al. RTNS ’18 (mprcs cmptng)
» Anytime algorithms more generally (declare victory and retreat)

n Exploiting both forms of tailoring at once?
» Need to define carefully how much to modify work vs. rate
» E.g., run an ε-less-precise calculation λ-slower (tune ε vs. λ)

Cut (Utilization) to Fit: One Size Doesn’t Fit All



n Specify utilization at every criticality level for each task
» Highest-criticality tasks already will do this under Vestal model
» All lower-criticality tasks must do this if they can’t be dropped

n Co-design parameters, constraints, objectives carefully
» If (and only if) platform allows, remove unnecessary pessimism
» Design to minimize each task’s footprint at each criticality level

• Minimum should still meet the task’s constraints
• Higher should improve optimization objectives monotonically

Say What You Mean, Mean What You Say



!! !? ?! ??

Feedback is Welcome



E.g.,	periodic	 resource	model	[Shin	 and	Lee,	RTSS ’03]
Θ units	budgets	every	Π time	units
uncertainties	on	the	budgets	 (Θ#$ v.s.	Θ%&)?

Mixed-Criticality	Scheduling	with	Varying	Processor	Supply	
in	Compositional	Real-Time	Systems
Kecheng	Yang,	Department	of	Computer	Science,	Texas	State	University

Uncertaintiesmay	trigger	a	criticality	mode	switch (e.g.,	LO	to	HI)	in	MCS

WCETs	[e.g.,	Vestal	RTSS ’07]
Periods,	Deadlines	[e.g.,	Baruah,	RTSS ’16]
Processor	Speed	 [e.g.,	Baruah and	Guo,	RTSS ’13]
Processor	Supply?	from	partially	available	processor(s)

Θ%&

Θ#$

When?	
How	are	the	uncertainties	monitored?
Signal	the	reduction	of	supply
1)	before the	replenishment	period
2)	after the	replenishment	period
3)	during the	replenishment	 period

Π

1) 3) 2)

Potential	avenues:
In	additional	 to	bounding	and
shaping the	demand from	the	tasks	
[Ekberg	and	Yi,	ECRTS ’12],	it	might	
need	to	bound	and	shape the	supply
from	the	processor(s)	 as	well.	

Other	resource	model?
Multiple	Π in	addition	 to	Θ?
Multiprocessor?



Challenges of MCS

Iain Bate

University of York



Future Embedded Systems

• Common themes based on discussions with 
avionics, automotive and other manufacturers

• System consists of platform plus other 
hardware, e.g. sensors and actuators

• Platform can mean
– Processing platform - Processor + software
– Whole system platform, e.g. the car or aircraft

• Environment is the context the system 
operates and includes the users



Key Challenges

• Realities throws up lots of research and 
implementation challenges!!

• For example, shock and horror!!
– Real systems don’t have independent tasks
– Dependencies:

– Explicit, e.g. transactions

– Implicit, e.g. caches etc

– Real systems have a RTOS which analysis needs to allow for
– The magic Ci figure is not as simple as it seems

• Systems will feature more un-certainties
– These should be welcomed and embraced rather than avoided



Key Challenges
• Need to build confidence à digital twinning

– Start off with simulation
– Move to rig testing
– Progress to pre-deployment testing
– Continue into service
– Validate and refine at each stage
– As confidence grows, then trust and capability can be extended

• (Whole system) platform will have greater 
connectivity 

• Maintenance cycles need to be shorter
– Need more data to support maintenance
– Cloud-based analytics



Processing Platform
• Multi-core – task allocation needs understanding of 

shared resource usage

• Mixed-criticality versus Resilient Scheduling
– Need an effective balance between efficient use of resources 

and achieving certification
– Mixed-criticality doesn’t deliver this both in “name” and the 

model
– Functional hazard-related criticality and ability to skip 

some jobs not directly linked
– Systems should meet their requirements
– It is rarely acceptable to say 5% service is lost
– Loss of service (duration and arrival rate) needs to be 

understood and specified



Processing Platform
• Reduce RTOS overheads

– Reduce the number of tasks
– Reduce the number of context switches

• Where does CLo and CHi come from?
– We have lots of data but decisions are needed
– Need to give right balance between flexibility and how often 

mode changes happen
– Being able to use the distribution might be better

• Task allocation
– Needs to support the previous points
– For example, try to segregate a task sensitive to shared 

resource usage X from a task using varying amount of X



System

• An appropriate model is needed from which 
code can be generated

• Models have to allow for the real behaviours of 
the platform

• Code from a number of models need to be 
integrated

• Resultant code needs to be efficient on 
targeted platform

• Review and change of the models is an issue

• Models have to be shown to be valid



Environment

• System and platform models should result in 
appropriate response

• Balance between efficient and effective 
system, and the need for dependability 
including safety



Resource-efficient timing isolation for adaptive mixed-criticality 
systems with multiple types of shared resources.

• Vestal’s adaptive mode-based model promotes resource efficiency.
• At mode change, processor resources are taken away from lower-criticality (or lower-

importance) tasks and given to the higher-criticality (importance) tasks.
• The same approach could be applied to other resources 

• Memory bandwidth, caches etc.

• Single-Core Equivalence framework (SCE)
• Partitions access to shared resources or regulates access to them (Memguard, cache-

partitioning, Palloc etc).
• Meant to facilitate the portability of applications to multicores.
• It can also make mixed-criticality applications more timing-predictable.

• Challenge: readjust tasks’ resource access budgets at mode-change AND do 
this for multiple resource types.

• Memory access budgets, cache partitions, amount of memory pages locked etc…

K. Bletsas - CISTER Research Centre, Portugal 
(WMC 2018 workskshop panel presentation)


