Linux Kernel Development (LKD)
Session 3

Scheduling and System calls

Paulo Baltarejo Sousa
pbs@isep.ipp.pt

2017

CISTER - Research Centre in 1 Instituto Superior de PBJ) mescrec
“ —-’—) Real-Time & Embedded Computing Systems I S el] Engenharia do Porto

Disclaimer

Material and Slides
Some of the material/slides are adapted from various:
@ Presentations found on the internet;
@ Books;
@ Web sites;
o ..

Outline

0 Scheduling Concepts

Q Scheduling algorithms

Q Linux scheduling framework
e System calls

e How to add a new system call
Q Invoking system calls

0 Books and Useful links

Scheduling Concepts

@ A process is an active program and related resources.

e From the kernel’s point of view, the purpose of a process is to act
as an entity to which system resources (CPU time, memory, etc.)
are allocated.

@ It may have one or more threads of execution

e Each thread includes a unique program counter, process stack, and
set of processor registers

@ Provides two virtualisations, giving the illusion that it alone
monopolises the system

e Virtualised processor
e Virtualised memory

@ Modern operating systems are able to run several processes at
the same time

e At least, this is the impression users get, even with only one CPU

@ The kernel and the CPU create the illusion of multitasking by
switching repeatedly between the different applications running on
the system at very rapid intervals

@ This gives rise to several issues that the kernel must resolve

e Memory access: how to protect processes from one another?
e Scheduling: which process to run and for how long?
e Dispatching: how to switch processes?

Process scheduler and Dispatcher

@ The process scheduler decides which process runs, when, and
for how long

e ltis the basis of a multitasking operating system
@ By deciding which process runs next, the scheduler is responsible
for best utilising the system
e It divides the finite resource of CPU time between the runnable
processes on a system
@ It needs a scheduling policy, which defines the scheduling rules

@ The Dispatcher is the module that gives control of the CPU to the
process selected by the scheduler
e Switching context;
e Switching to user space.
o ...

Scheduler and dispatcher

Selects the
next running
process
]
A
Scheduler 'q Dispatch 'q cPU

Gives control of the
CPU

8/59

Context switching (I)

@ The act of switching from one process to another

@ The system has to:
e Save the context of the current process

e Restore the context of the new process

| Process Po Operating System Process Py [

; Interrupt or system call
Executing

Save state into PCBo

)
] Idle

Reload state from PCB:. -

Interrupt or system call Executing

Save state into PCB: ~
) -

a

- Reload state from PCBo Idle
Executing

p=Idle

Context switching (Il)

@ What is the context of a process?

e Program Counter

Stack Pointer

Registers

Code + Data + Stack (also called Address Space)

Other state information maintained by the OS for the process (open
files, scheduling info, 1/0O devices being used, etc.)

@ All this information is usually stored in a structure called Process
Control Block (PCB)

Process State

@ Multitasking implies process states.
e Names for these states are not standardised, but they have similar
functionality:
@ Ready: ready to run, but waiting to be scheduled;
@ Running: executing at the moment;
@ Waiting: waiting for I/O or an event;
@ Terminated: no longer ready to execute.

Preempted (

Exit W
,,777\\/\//**' .

Running

Scheduled Waiting for

1/0 or event
1/0 ends or
event arrives

>

BN

Scheduling events

@ A process switches from the running state to waiting state (e.g.
I/O request);

@ A process switches from the running state to the ready state (e.g.
time slice expires);

@ A process switches from waiting state to ready state (e.g.
completion of an 1/O operation);

@ A process terminates.

All executing tasks go from ready to running state. Note that, there is
only one task in the running state, per CPU.

Scheduling queues

@ Ready queue: All processes that are ready for execution

@ Wait queues: When a process is blocked in an 1/O operation or
waiting for an event, it is put in a device/event queue

————————————————————————————————————

[- end
b e — @

job queue

I/O wraiting
queue(s)

10

13/59

Scheduling algorithms

RS kpis3 14/59

@ Preemptive: The ability of the operating system to preempt or
stop a currently scheduled process in favour of a “higher priority
process”.

@ Non-preemptive: Once the CPU has been allocated to a process,
the process keep the CPU until it release the CPU either by
terminating or by switching to waiting state. (Windows 95 and
earlier)

@ Process priority:

e A numeric value that ranks processes based on their worth and
need for processor time;

e The general idea is that processes with a higher priority run before
those with a lower priority

@ Time slice:

e A numeric value that represents how long a task can run until it is
preempted.

Scheduling issues (ll)

@ Process types:
e 1/0-bound:
@ Spend much of their time submitting and waiting on 1/O requests
@ Consequently, such processes are runnable for only short durations,
because they frequently block waiting on more 1/0

e CPU-bound:

@ Spend much of their time executing code
@ Tend to run until they are preempted/finished because they do not
block on I/O requests very often

Scheduling issues (lll)

@ Starvation: is a problem encountered in multitasking where a
process is perpetually denied of necessary resources. Without
those resources, the program can never finish its task;

@ Scalability: the scheduler must scale well with a growing number
of tasks.

@ Priority Inversion: if using priorities, a low-priority task must not
hold up a high-priority task;

@ Fairness: a scheduler makes sure that each process gets its fair
share of the CPU and no process can suffer indefinite
postponement (starvation).

Scheduling issues (V)

@ A scheduling algorithm is the algorithm which dictates how
much CPU time is allocated to processes.
@ Scheduling decisions can be taken according to:
e Past behavior of process
e Urgency
@ Priority
e Origin (batch, interactive)
@ It should:
e Be fair and predictable;
e Balance load;
e Maximize: throughput, CPU utilization;
e Minimize: overhead, turnaround time, waiting time and response
time

@ Failure to meet these goals can cause starvation.

Scheduling algorithms

@ First-Come, First-Served (FCFS);
@ Shortest-Job First (SJF);

@ Round-Robin (RR);

@ Priority-based scheduling;

@ Multi-level scheduling;

@ Real-Time Scheduling.

RS kpis3 19/59

Linux scheduling framework

@ The scheduler (or dispatcher) is the part of the kernel responsible,
at run-time, for allocating processors to tasks for execution and
the scheduling classes are responsible for selecting those tasks.

@ The scheduling classes encapsulate scheduling policies.

e These scheduling classes are hierarchically organized by priority
and the scheduler inquires each scheduling class in a decreasing
priority order for a ready task.

@ Linux has four main scheduling classes: Deadline (DL), Real-Time
(RT), Completely Fair Scheduling (CFS) and Idle.

e In this system, the scheduler first inquires the RT scheduling class
for a ready task.

@ If DL scheduling class does not have any ready task, then it inquires
the DL scheduling class.

@ If RT does not have any ready task, it proceeds by inquiring CFS and
then it reaches the Idle scheduling class, used for the idle task.

@ Every processor has an idle task in its ready-queue that is executed
whenever there is no other ready task.

Overview (Il)

| 1
| 1
| 1
1
X Scheduler !
1
X |
| 1
1

Scheduling classes

1
|
RT -~ CcFs | Idle :
|
1
1

. . |
Scheduling policies

|
|

I

|

I

SCHED_RR

ilt is missinﬁ the DL schedulinﬁ classl.
22 /59

@ For every active processes in the system, Linux kernel create an
instance of struct task_struct to manage them.
e The kernel must have a clear picture of what each process is doing.
It must know, for instance, the process’s priority, whether it is
running on a CPU or blocked on an event, what address space has
been assigned to it, which files it is allowed to address, and so on.
@ A runqueue is a container for all processes in a TASK_RUNNING
state.
e Each CPU has its own runqueue; all runqueue structures are
stored in the runqueues per-CPU variable of type struct rq.

Data structures(ll)

@ The Linux scheduler is modular, enabling different
algorithms/policies to schedule different types of tasks.

e An algorithm’s implementation is wrapped in a so called scheduling
class.

@ A scheduling class offers an interface to the main scheduler
skeleton which it can use to handle tasks according to the
implemented algorithm.

@ A scheduling class is an instance of struct sched_class data
structure.

struct task struct

@ /include/linux/sched.h

struct task_struct {

#ifdef CONFIG_THREAD_INFO_IN_TASK

/*

*+ For reasons of header soup (see current_thread_info()), this
+ must be the first element of task_struct.

*/

struct thread_info thread_info;

#endif

/* -1 unrunnable, 0 runnable, >0 stopped: #*/
volatile long state;

void xstack;

atomic_t usage;

/% Per task flags (PF_x), defined further below: #*/
unsigned int flags;

unsigned int ptrace;

struct rq

@ It keeps track of all runnable tasks assigned to a particular CPU:
@ a lock to synchronize scheduling operations for this CPU
e Pointers to the currently running (curr) and the idle (id1le) tasks.
e Actually, runqueue incorporates sub-runqueues per scheduling
classes:d1, cfs and rt, for DL, CFS and RT scheduling classes,
respectively.

@ /kernel/sched/sched.h

struct rqg {
/% runqueue lock: x/
raw_spinlock_t lock;

unsigned int nr_running;

struct cfs_rg cfs;
struct rt_rqg rt;
struct dl_rqg dl;

struct sched class (l)

@ /kernel/sched/sched.h

struct sched_class {
const struct sched _class *next;

void (*enqueue_task) (struct rg xrqg, struct task_struct xp, int flags);
void (xdequeue_task) (struct rg xrq, struct task_struct xp, int flags);

void (*xcheck_preempt_curr) (struct rq xrqg, struct task_struct *p, int flags);
struct task_struct « («pick_next_task) (struct rqg *rq,

struct task_struct xprev,
struct rg_flags »rf);

void (xtask_tick) (struct rg xrqg, struct task_struct xp, int queued);

Vi

27/59

@ next: Itis a pointerto struct sched_class thatis used to
organize the scheduler modules by priority in a linked list and the
scheduler core, starting by the highest priority scheduler module,
will look for a runnable task of each module in a decreasing order
priority.

@ enqueue_task: Called when a task enters a runnable state.

@ dequeue_task: Called when a task is no longer runnable.

@ check_preempt_curr: This function checks if a task that
entered the runnable state should preempt the currently running
task.

@ pick_next_task: This function chooses the most appropriate
task eligible to run next.

@ task_tick: This function is mostly called from time tick
functions;

struct sched_class (lll)

@ Except for the first one, all members of this struct are function

pointers which are used by the scheduler core to call the
corresponding policy implementation hook.
@ All existing scheduling classes in the kernel are in a list which is
ordered by the priority of the scheduling class.

@ |dle is special scheduling classes.ldle is used to schedule the
per-cpu idle task (also called swapper task) which is run if no

other task is runnable.

sched _class_highest

sched_class

kernel/sched rt.c kernal/sched fair.c

rt_sched_class

fair_sched_class

kernel/sched idletask.c

idle_sched_class

next

next WULL
engueue_task enqueus_task_rt enqueue_task_fair HULL
dequeue_task_rt dequeue_task_fair degueue_task_idle
yield_task_rt yield_task_fair RULL
check preempt_curr_rt check_preempt_wakeup ||check preempt_curr_idle
pick_next_task_rt pick_next_task_fair pick_next_task_idle
put_prev_task

put_prev_task_rt

put_prev_task_fair

put_prev_task_idle

LKD: S3

29/59

@ The main entry point into the process scheduler is the function
__schedule.

@ This is the function that the rest of the kernel uses to invoke the
process scheduler, deciding which process to run and then
running it.

@ Its main goal is to find the next task to be run.

@ It hastwo struct task_struct pointers, prev and next that
are set with the currently executing task (which will relinquish
CPU) and the next task to be executed (which will be assigned to
CPU), respectively.

___schedule function

static void __sched notrace __schedule (bool preempt) {
struct task_struct xprev, *next;
unsigned long *switch_count;
struct rq flags rf;
struct rg xrg;
int cpu;
cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rg->curr;
local_irqg _disable();
rq_lock(rqg, &rf);
if (!preempt && prev->state) {
if (unlikely(signal_pending_state (prev->state, prev))) {
prev->state = TASK_RUNNING;
} else {
deactivate_task (rqg, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK) ;

}
next = pick_next_task(rq, prev, &rf);
if (likely(prev != next)) {
rg->curr = next;
rq = context_switch(rqg, prev, next, &rf);
} else {

}

31/59

@ Since the Linux kernel is pre-emptive, it can happen that a task
executing code in kernel space is involuntarily pre-empted by a
higher priority task.

e The first thing, it does is disabling the interrupts by calling
local_irqg_disable.
e Secondly, it locks the current CPU’s runqueue and, at same time.

@ Next, it examines the state of the currently executing task, prev.

e If it is not runnable and has not been pre-empted in kernel mode,
then it should be removed from the runqueue. To remove a task
from the runqueue, deactivate_task is called which internally
calls the dequeue_task hook of the task’s scheduling class.

e However, if it has nonblocked pending signals, its state is set to
TASK_RUNNING and it is left in the runqueue. This means prev
gets another chance to be selected for execution.

@ Next, it is time to pick the next task to be assigned to the CPU
calling pick_next_task function.

@ After that, it checks if pick_next_task found a new task or if it
picked the same task again that was running before.

o If the latter is the case, no task switch is performed and the current
task just keeps running.

e If a new task is found, which is the more likely case, the actual task
switch is executed by calling context_switch. Internally,
context_switch switches to the new task’'s memory map and
swaps register state and stack.

@ To finish up, the runqueue is unlocked and pre-emption is
reenabled.

Calling the Scheduler

@ __ schedule function is invoked when:
o Whenever a task is mark to be preempted.
e At regular times, at timer tick expiration.
e Currently running task goes to sleep or finishes.
e Sleeping task wakes up or newly forked tasks.

RS kpis3 34/59

Requiring preemption

@ resched_curr function marks the currently executing task to be
preempted.

@ This sets the TIF_NEED_RESCHED flag in the task structure, and
the scheduler core will initiate a rescheduling at the next
opportune moment.

@ Example:

e An interrupt occured.
e Interrupt handler is invoked to manage the interrupt request.

o Ifthe resched_curr is invoked in the interrupt handle function.
e When it proceeds to the IRQ Exit path, it checks:

@ If TIF_NEED_RESCHED flag is set, it calls __schedule function.

scheduler_tick function (I)

@ The function scheduler_tick is called regularly by a timer
interrupt, called tick.

@ Its purpose is to update runqueue clock, CPU load and runtime
counters of the currently running task.

@ It calls the scheduling class hook task_tick of the currently
executing task task update for the corresponding class.

e at this point it can mark the current executing task to be preempted,
by calling resched_curr function.

@ load balancing is invoked if SMP is configured.

System calls

Introduction

@ It is not possible for user-space applications to execute kernel
code directly

e They cannot simply make a function call to a method existing in
kernel-space because the kernel exists in a protected memory
space

@ If applications could directly read and write to the kernel’s address
space, system security and stability would be nonexistent

‘applications, Tools
o User
Space
‘ ‘ ‘ ‘ System cals
Proce: Memory File systems | [Device drivers Network
management manageme: Components
Wulitasking Virtual Memory Files, Dovi Network .
directories tor functionality ~ Functionality Kernel
Space
Scheduler, Memory File systoms Character Network software
architecture management types devices protocols o
specific code Suppor
Block devices Hetwar ardware
support
cPu RAM Hard disk, CD, Terminals Network Hardware
equipment adapter

LKD: S3

38/59

Communicating with the kernel (I)

@ Typically, applications are programmed against an Application
Programming Interface (API) implemented in user-space
e An API defines a set of programming interfaces used by
applications
@ The C library implements the main API on Unix systems
@ Including the standard C library, the system call interface, and the
majority of the POSIX API

#include <stdio.h>

int main(int argc, char xargv([]) {
printf ("LKD is cool\n");

return 0;

}

calltoprintf()” | [™printf() in the C library ~~_* write() in the C library” | | write() system call

Application » C library » Kernel

Communicating with the kernel (ll)

@ From the application programmer’s point of view, system calls are
usually irrelevant
e All the programmer is concerned with is the API
@ Libraries, in turn, rely on a system call interface to instruct the
kernel to carry out tasks on the application’s behalf
e These interfaces act as the messengers between applications and
the kernel

Tracing system calls

@ The strace command line tool logs all system calls issued by an
application and makes this information available to programmers
@ > gcc test.c -o test
@ > strace ./test

#include <stdio.h>

int main(int argc, char *xargv([]) {
printf ("LKD is cool\n");

return 0O;

}

execve ("./test", ["./test"], [/x 73 vars #/]) = 0

write(1l, "LKD is cool\n", 12LKD is cool
) = 12

exit_group(0) = 2

+++ exited with 0 +++

RS kpis3 41/59

System call identifier

#include <unistd.h>

int main(int argc, char xargv[]) {
syscall(l,1,"LKD is cool\n", 12);
return 0;

@ System call are identified by a number.
@ > gcc testl.c -o testl
@ > ./testl

42/59

How to add a new system call

RS kpis3 43/59

S Howoadamewssencal
Steps

Add a new entry to the system call table. This is located at
arch/x86/syscalls/syscall_64.tbl.

Provide a function prototype in the
include/linux/syscalls.h file.

Implementation of the system call function

Include the system call function in the Linux kernel compilation
process.

44/59

System call table (I)

@ Each system call is assigned a number

e This is a unique number that is used to reference a specific system

call
@ The kernel keeps a list of all registered system calls in the system
call table

e This table is architecture-dependent.
@ On x86 it is defined in
/arch/x86/entry/syscalls/syscall_64.tbl

#

64-bit system call numbers and entry vectors
#

The format is:

<number> <abi> <name> <entry point>

#

The abi is "common", "64" or "x32" for this file.
#

0 common read sys_read

1 common write sys_write

2 common open sys_open

3 common close sys_close

330 common pkey_alloc sys_pkey_alloc

LKD: S3

45/59

System call table (Il)

@ The format is: <number> <abi> <name> <entry point>
@ <number>

@ All syscalls are identified by a unique number. In order to call a

syscall, we tell the kernel to call the syscall by its number rather than
by its name.

@ <abi>
@ The ABI, or Application Binary Interface, to use. Either 64, x32, or
common for both.
@ <name>
@ This is simply the name of the syscall.
@ <entry point>
@ The entry point is the name of the function to call in order to handle
the syscall.

@ The naming convention for this function is the name of the syscall
prefixed with sys_.

@ For example, the read syscall’s entry point is sys_read.

System call function prototype ()

@ A function prototype is a function declaration that specifies the
data types of its arguments in the parameter list as well its return.

@ The function prototype for our entry function will look like the
following:
@ asmlinkage long <entry point>(<list of
arguments>);

@ The curious part of this line is the asmlinkage.
@ This is a macro that tells to the compiler that the function should
expect all of its arguments to be on the stack rather than in registers.

System call function prototype (ll)

@ The function prototype of syscall’s entry function must be included
intoinclude/linux/syscalls.h file.

@ The function prototype for our entry function will look like the
following:

@ asmlinkage macro specifies the method to handle the system call
argument(s) on the kernel stack.

Linux naming conventions

@ Defining a system call with SYSCALL_DEFINEnR
@ SYSCALI_DEFINEn macros are the standard way for kernel code
to define a system call, where the n suffix indicates the argument
count. The definition of these macros (in
include/linux/syscalls.h)
@ SYSCALL_DEFINE3 (read, unsigned int,
__user *, buf, size_t, count)

fd, char

RS kpis3 49/59

@ User-space applications must somehow signal to the kernel that
they want to execute a system call and have the system switch to
kernel mode

e The mechanism to signal the kernel is a software interrupt
@ Raises an exception (interrupt), the system will switch to kernel mode
and execute the interrupt handler, that, in this case, is actually the
system call handler
@ On x86 processors it is used int assembly instruction, with interrupt
number 128 (or 0x80):

@ On more modern processors of the |A-32 series (Pentium Il and
higher) two assembly language instructions (sysenter and
sysexit) are used to enter and exit kernel mode quickly.

@ On x86_64 processors the syscall assembly instruction is used to
enter into kernel.

System call handler (ll)

user process - Kernel .,
main() 7 ENTRY(system_call) /*entry.S*
SAVE_ALL
fork{} ! IDT T
0x0 | divide_error{) call *SYNBOL_NAME{S?S_C&HJRNO)(,"/::9&)(_-4)._
T | debug() s ;
libe.a ! [nmi{)
fork()
{ |-
_ 1
movl 2, %eaX | gxgo 1 \ o= iy
int 0x80 L system_call{) 2 sys_fork()
y nemiy 3| sys_read) I* archii3g6/kerneliprocess.c "I
4| sys write { I* kernelifork.c *.‘

RS kpis3 51/59

Invoking system calls

Invoking system calls (I)

@ System calls can be indirectly invoked with syscall function.

@ long syscall (long number, ...)

e The return value is defined by the system call being invoked. In
general, a 0 return value indicates success. A —1 return value
indicates an error, and an error code is stored in errno.

Invoking system call (ll)

@ Parameter passing on x86
@ On x86, the parameters are stored in CPU registers (%eax,%ebx,
$ecx, %edx, ¥esi, and %edi).

@ For the system call number is used %eax .

@ The registers %ebx, %ecx, $edx, $esi, and $edi contain, in order,
the first five parameters.

@ For six or more parameters, a single register is used to hold a pointer
to user-space where all the parameters are stored.

@ The return value is sent to user-space also via $eax register.

@ System calls use kernel stack.

Invoking system call (lll)

@ Each system call must inform the user application whether its
routine was executed and with which result
@ From the perspective of the application, a normal variable is read

using C programming features
@ The return value is sent to user-space also via a CPU register
e On x86, it is written into the $eax register

User-space Kernel-space

(Llﬁeralppllcamn)(C-Library) (Kemnel] [Sys:elm{zll)

getpid(void) Loadjargurpents
ax= INR_getpid,

eax= |
transition §o kerfiel (int 80; system_call

call
system_call_tablefeax]

(Jpichebshs

syfscall_ext e

resumg_usefspace

Retum

Invoking, executing and returning

Run
main()
call
syscall,
trap into
0s

cont
running

return
from
main,

handler

handle
trap, do
work of
syscall,
ret-from
-trap

restore

User Mode

Hardware

Kernel mode

56 /59

Books and Useful links

RS kpis3 57/59

@ Linux Kernel Development: A thorough guide to the design and
implementation of the Linux kernel, 3rd Edition, Robert Love.
Addison-Wesley Professional, 2010.

@ Professional Linux Kernel Architecture, Wolfgang Mauerer. Wrox
, 2008.

@ Linux Device Drivers, 3rd Edition, Jonathan Corbet, Alessandro
Rubini, Greg Kroah-Hartman. O’Reilly, 2005.

@ Understanding the Linux Kernel, 3rd Edition, Daniel P.Bovet,
Marco Cesati, O’'Reilly Media, 2005.

Links

@ clixir.free-electrons.com/linux/v4.10/source
@ www.kernel.org/doc/htmldocs/kernel—-api/

@ kernelnewbies.org/Documents

@ lwn.net/Kernel/LDD3/

elixir.free-electrons.com/linux/v4.10/source
www.kernel.org/doc/htmldocs/kernel-api/
kernelnewbies.org/Documents
lwn.net/Kernel/LDD3/

	Scheduling Concepts
	Scheduling algorithms
	Linux scheduling framework
	System calls
	How to add a new system call
	Invoking system calls
	Books and Useful links

