
Verification Conditions for Source-level

Imperative Programs

Maria João Frade and Jorge Sousa Pinto

Departamento de Informática / CCTC
Universidade do Minho, Braga, Portugal

Abstract

This paper is a systematic study of verification conditions and their use in the
context of program verification. We take Hoare logic as a starting point and study
in detail how a verification conditions generator can be obtained from it. The notion
of program annotation is essential in this process. Weakest preconditions and the use
of updates are also studied as alternative approaches to verification conditions. Our
study is carried on in the context of a While language. Important extensions to this
language are considered toward the end of the paper. We also briefly survey modern
program verification tools and their approaches to the generation of verification
conditions.

Key words: Hoare logic, Verification Conditions, Program Verification, Program
Annotations, Weakest Preconditions, Updates

1 Introduction

The idea of specifying the behaviour of programs through the use of precon-
ditions and postconditions, and in general of assertions that are true or false
relative to the current state of execution of a program, has been around since
the 1960’s and given rise to the development of the axiomatic style of program
semantics, associated with the use of some program logic. The same idea has
been used since the 1970’s in the implementation of practical tools for check-
ing the correct behaviour of programs (vis-à-vis their specifications), marking
the birth of program verification as a research area.

Email address: {mjf,jsp}@di.uminho.pt (Maria João Frade and Jorge Sousa
Pinto).

Preprint submitted to Elsevier 15 February 2011

In the development of early tools [49, 40, 58, 15] it became clear that the
most convenient way to organise a program verification system is to use the
axiomatic semantics to generate first-order proof obligations (baptised Veri-
fication Conditions, VCs for short) that can be handled by a standard proof
tool. The idea is that if all proof obligations generated for a program can
be discharged (i.e. they can be proved valid), then the program is guaran-
teed to be correct. The semantics-based component that generates the proof
obligations is called a Verification Conditions Generator (VCGen for short).

Program verification has recently received renewed attention from the software
engineering community. One very general reason for this is the continuing and
increasing pressure on industry to deliver software that can be certified as
safe and correct. A more specific reason is that program verification methods
suit very naturally the so-called design-by-contract methodology for software
development, with the advent of program annotation languages like JML.
Program verification fits in as the static, formal component of a methodology
that encompasses also other validation methods like dynamic checking and
testing.

As will become clear throughout the paper, program verification based on
program logics cannot in general be fully automated. Human intervention is
often required in one (or both) of two forms: by providing annotations in
the code, such as loop invariants, that facilitate automatic reasoning, and by
manually proving the hardest proof obligations generated in the verification
process – the need for manual proof (usually with the help of a proof assistant)
is in fact a direct consequence of the fact that first-order logic is not decidable.

We remark however that there exists a wealth of work on the automatic genera-
tion of invariants (see Section 11 for classic references), and some modern ver-
ification platforms incorporate invariant generation functionality. Moreover,
advances in automated theorem proving have also been very significant in re-
cent years. Another reason for the recent resurgence of program verification
as a hot topic has to do precisely with advances in both of these areas, in
particular the emergence of SMT solver technology. We shall have more to say
about this is Section 11.

In contrast with this flavour of program verification (usually known as deduc-
tive verification), we find a class of techniques in which automation is priori-
tary. Techniques organised around the designation of software model checking
are based on the extraction of a labelled transition system from the code, fol-
lowed by the verification of temporal properties by model checking the tran-
sition system (i.e. by exploring the model exhaustively). Several surveys are
available on software model checking [32, 30, 53]. The first of these papers
classifies deductive methods as path insensitive, and software-model checking
methods as path sensitive. This means in particular that when a problem is

2

found, a software model checker returns one particular initial state that leads
to that problem, whereas deductive methods consider sets of initial states,
characterised by first-order properties. In the case of concurrent systems, all
paths corresponding to different interleavings of the processes involved are con-
sidered, which makes path sensitive techniques particularly suitable to analyse
such systems.

Full automation is of course a standard argument in favour of model checking
techniques. Let us note however that automation comes with a price, which in
the case of model checking is the well-known state explosion problem. In prac-
tice, software model checkers typically rely on additional techniques such as
predicate abstraction, which allows for the construction of over-approximated
models, with significantly smaller state spaces. Precision is lost, but soundness
is not, which means that although false errors may be found, absence of errors
can be interpreted safely.

It is also essential to mention the theoretical framework of abstract interpre-
tation [22], which stands at the heart of many successful static analysers.
Although not usually considered as a form of program verification, abstract
interpretation is used as an auxiliary tool for both deductive verification (no-
tably in the automatic inference of invariants, see Section 11) and software
model checking tools (predicate abstraction, mentioned above, is a form of
abstract interpretation).

In comparison with path-sensitive approaches [32], deductive methods ben-
efit from very expressive property languages (typically based on first-order
logic) and are particularly amenable to compositional reasoning – the design-
by-contract approach explores precisely this aspect. A more technological ad-
vantage, which has been explored by a few recent tools, has to do with the
generation of first-order proof obligations. Since there are many available proof
tools, which are continuously being developed and improved, verification plat-
forms can take advantage of those improvements, and even use a combination
of proof tools, both automatic and interactive. The analysis of the source
code and generation of proof obligations is completely decoupled from the
first-order theorem proving.

Let us add to this that the flexibility of deductive methods has in recent times
allowed these methods to be successfully used in targeting new certification
requirements created, for instance, by mobile code and the associated new
architectures for the execution of software. For instance, the following two
techniques both rely on verification conditions, and provide yet further moti-
vation for the relevance of program logic-based methods for reasoning about
programs.

• Proof-carrying code [71], based on the generation of verification conditions

3

from annotated low-level (compiled) code. The idea is that a compiler can
automatically produce a proof – a certificate – that the compiled code satis-
fies some requirements (say, it performs only safe memory accesses), and an
execution platform may then (cheaply, and without relying on the behaviour
of complex pieces of software like compilers or theorem provers) generate
VCs and check that the certificate provides evidence for these VCs. The
very existence of this certificate, a proof object, is a unique characteristic of
deductive methods.

• Certain information-flow properties (such as non-interference) that have
traditionally been treated using a number of language-based security tech-
niques [78] may also be addressed using deductive methods like self-compo-
sition [8], which can be implemented resorting to a standard deductive ver-
ification platform based on Hoare logic or weakest preconditions. Dynamic
logic has also been used to the same effect [23] but requires a dedicated tool.

This paper is a study of verification conditions for imperative, sequential,
high-level programming languages. Our tutorial presentation treats annotated
programs formally, and provides a uniform development of VCGen algorithms
from program logics. Although we do not attempt to give a thorough survey of
program logics or program verification systems, we do examine (and provide
references for) those systems that have become more popular in recent years.

The paper is structured as follows. Section 2 sets the basis by introducing a
simple programming language and the notion of Hoare triple. In Section 3 the
inference system H of Hoare logic is introduced, and Section 4 discusses its use
in program verification, based on the generation of Verification Conditions.
Section 5 presents an alternative, goal-directed formulation of Hoare logic
(system Hg), that is more amenable to mechanising the construction of proof
trees, since it contains no ambiguity in the choice of inference rule. In Section 6
we show how the introduction of program annotations (resulting in systems
Hga and Hgi) completes this progression toward the mechanisation of Hoare
logic.

The previous approach forces the insertion of annotations between any two
composed commands of a program. The next step is to eliminate the need for
this tedious process. This can be done in two ways: by backward propagation
of assertions, and by forward propagation. The former approach leads us in
Section 7 to VCGens based on Dijkstra’s weakest preconditions. The latter
approach, covered in Section 9, takes us in the direction of systems based on
the use of updates (system Hu). Section 10 discusses how the simple language
used here can be extended with a number of features that can be found in
realistic programming languages. Finally, Section 11 surveys work that has
helped to bring deductive verification into practice.

4

We also briefly review verification condition generation tools that bring into
practice these ideas. Section 8 presents a guarded command language in the
style introduced by Dijkstra, and discusses how it has been used as an inter-
mediate language in the VCGens of the ESC family of tools. The KeY tool,
based on a variant of dynamic logic, is discussed in Section 9; the Boogie and
Why tools, both generic VCGens, are discussed in Section 11. Our goal here
is not to exhaustively cover all tools for program verification; we merely select
a few that we find suitable to illustrate the concepts discussed in the paper.

2 Programs and Specifications: Hoare Triples

In this paper we explore methods for specifying programs in a simple im-
perative language and for proving formally the correctness of programs with
respect to such specifications. We consider only partial correctness specifica-
tions: programs are required to behave properly if they terminate, but are not
required to terminate.

We consider a typical While language with data types for integer numbers and
Booleans. Commands include a do-nothing command, assignment, composi-
tion, while loop and (two-branched) conditional execution. The language has
two base types

τ ::= bool | int

The syntax of Boolean and integer expressions could be more or less evolved;
Boolean expressions should contain the Boolean constants true and false,
and it must be possible to form expressions by comparing the values of two
integers. The language also includes Boolean operators for conjunction, dis-
junction, and negation (we use C/Java-like syntax for operators). Integer ex-
pressions are formed from constants and a set of variables V , together with a
number of operators on integers. We let x, y, ... range over V . Note that these
choices have no impact on the material presented in the paper; the reader will
find in the literature presentations that use simpler languages as well as richer
ones.

The key semantic notion is that of the program state (given by the values of
the variables involved in the computation). The value of an expression depends
on the current state, and the computing device may in general change the state
when it executes a command. In addition to expressions and commands, we
need syntax for formulas that express assertions about properties of particular
states, as well as a class of formulas for specifying the behaviour of programs.
We have the following phrase types

θ ::= Exp[τ] | Comm | Assert | Spec

5

Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x | −e | e + e | e− e | e ∗ e | e div e | e mod e

Exp[bool] 3 b ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e

| b && b | b ‖ b | ! b

Comm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do C

Assert 3 A ::= true | false | e == e | e < e | e <= e | e > e | e >= e | e != e

| ! A | A && A | A ‖A | A→ A | Forallx. A | Existsx. A

Spec 3 S ::= {A}C {A}

Fig. 1. Abstract Syntax

corresponding respectively to expressions (for each data type), commands,
assertions and specifications. Their abstract syntax is defined in Figure 1.
Note that the syntax rules may also be read implicitly as typing rules. For
instance, if e1, e2 have type Exp[int], then so has e1 + e2, and so on.

Expressions and commands are fairly obvious. It remains to discuss the lan-
guage of assertions, i.e. properties that hold at a given point in the program
execution, and program specifications.

It is common for assertions to be defined as a super-set of Boolean expressions,
since they may have to refer to the values of expressions in the current state
of the program. If the syntax for assertions is compatible with that of Boolean
expressions, it will be easier for ordinary programmers to write specifications
(and also program annotations, see Section 6).

We thus construct our language of assertions starting from the language of
Boolean expressions of the programming language, and extend that with an
implication connective. Moreover, to allow for first-order reasoning about pro-
grams, universal and existential quantifiers are introduced. So basically our
language of assertions is a first-order language, with integer expressions as
terms and binary comparison operators as predicates, both directly inherited
from the programming language. Integer expressions are interpreted in Z in
the standard way, as will be detailed below.

In examples to be given later in the paper, we will consider the possibility
of extending the assertion language with functions and predicates that are
not part of the programming language. This possibility is offered by most
program verification systems, and allows one to express properties that would
otherwise not be possible. In Section 6 an example will illustrate this point,
by introducing a logical function corresponding to Fibonacci numbers.

We remark that the particular choice for the language of expressions in the
programming language is itself merely illustrative; an alternative, more generic

6

presentation would be possible, in which the expression language, as well as
assertion language and its interpretation structure, are not fixed (this approach
is followed in [66]). The main ideas developed in this paper do not depend on
any particular choice of expression language, but fixing this language allows
us to give concrete examples.

Assertions that hold before and after execution of a program – preconditions
and postconditions respectively – will allow one to write specifications of pro-
grams or Hoare triples – the last syntactic category in Figure 1. The intuitive
meaning of a specification {P}C {Q} is that if the program C is executed in
an initial state in which the assertion (precondition) P is true, then either
execution of C does not terminate or, if it does, assertion Q (a postcondition)
will be true in the final state. Because termination is not guaranteed, this
notion is called a partial correctness specification.

The notions of specification and Hoare triple coincide. We remark however that
sometimes it is useful to consider a notion of specification (P,Q) consisting
only of a precondition P and a postcondition Q. In this view, if the Hoare
triple {P}C {Q} is valid for some program C, then C is said to be correct
with respect to the specification (P,Q). We will use both notions in the paper
but this should not generate any confusion.

The introduction of binding quantifiers in assertions imposes the usual no-
tions of free and bound variables. Variables that occur in the program C (and
possibly also free in the precondition P or in the postcondition Q) are called
program variables. Variables that occur free in P or Q but not in the program
will be called auxiliary or ghost variables (their use will be explained in Sec-
tion 7), and those that are bound by some quantifier in P or Q will be called
logical variables.

Semantics. The meaning of a grammatically correct program can be for-
malised in different ways (see [84, 76]):

• Operational semantics is focused on the computation the program induces
on a machine (small-step, or structural, if the emphasis is on the individual
steps of the execution; big-step, or natural semantics, if the emphasis is on
the relationship between the initial and the final state of the execution).
• Denotational semantics is focused on representing the effect of executing a

program by a mathematical object.

Frequently, the logical system for proving partial correctness properties of
programs is viewed as an axiomatic semantics, focused on specific properties
(expressed by assertions) of the effect of executing a program.

7

In the following, a natural semantics is used to describe the meaning of com-
mands, and we define semantic functions to interpret expressions, assertions
and specifications in a denotational style.

The semantics is given in terms of states. The base types are interpreted as
expected

[[bool]] = {true, false}

[[int]] = Z

Boolean and integer expressions are interpreted as Boolean or integer values,
but these values depend on the values of variables that may occur in the
expressions. In other words, they depend on a state, which is a function that
maps each variable into its integer value. 1 We write Σ = V → [[int]] for the set
of states, and for s ∈ Σ, y ∈ V and v ∈ [[int]], s[y 7→ v] denotes the following
state

s[y 7→ v](x) =

 v if x = y

s(x) if x 6= y

For each phrase type the corresponding domain of interpretation (the set of
possible meanings) is given as follows

[[Exp[τ]]] = Σ→ [[τ]]

[[Comm]] ⊆ Σ× Σ

[[Assert]] = Σ→ {true, false}

[[Spec]] = {true, false}

These domains reflect our assumption that an expression has a value at every
state (evaluation of expressions always terminates without an error stop, see
below) and that expression evaluation never changes the state (the language
is free of side effects).

The behaviour of a command is to transform the state of a computation.
Commands are interpreted operationally via the evaluation relation (·, ·) ⇓ · ⊆
Comm×Σ×Σ. Intuitively (C, s) ⇓ s′ means that the execution of C from s
will terminate and the resulting state will be s′. A command whose execution
does not terminate for an initial state s is absent from this interpretation since
there is no pair (s, s′) corresponding to it.

Denotationally, the meaning of a command would be a state-transformation
function Σ → Σ, and dealing with non-termination would require the in-

1 Another possibility would be to consider states as partial functions.

8

troduction of more sophisticated mathematical domains. This denotational
interpretation is not required (nor the most appropriate) for our present goal.

Assertions are interpreted as truth values depending on a valuation function
given by the state, and specifications are interpreted as truth values indepen-
dently of states.

Figure 2 shows the semantic equations that define the interpretation functions
for expressions, assertions and specifications, and the natural semantics for
commands as a set of evaluation rules. Note that we make an overloaded use
of [[.]] (we could subscript the semantic brackets with the phrase type of the
object phrase that is being interpreted, but this is usually obvious from the
phrase itself or from the context).

Concerning the interpretation of expressions, note that we are assuming that
n÷ 0 and nmod 0 produce some erroneous (and fixed) integer result. To treat
the detection of arithmetic errors it would be necessary to extend our current
semantics, for instance by enlarging the domains of interpretation of integer
and Boolean expressions to include one or more special results denoting errors.

Note that the semantic interpretation of a command C can be seen as a partial
function, since the binary relation on states induced by C satisfies the following
property.

Lemma 1 (Determinacy) If (C, s) ⇓ s′ and (C, s) ⇓ s′′, then s′ = s′′.

Proof. By induction on the structure of C. 2

The semantic interpretation of assertions is the usual for first-order logic.
Observe the correspondence between the logical connectives of the assertion
language and the connectives of classic predicate calculus used in the meta-
logic. Let A be an assertion and s ∈ Σ. If [[A]](s) = true, we say that A holds
for s. When [[A]](s) = true for all states s ∈ Σ, A is said to be valid, written
|= A. For a set of assertionsM, we write |=M if |= A holds for every A ∈M.

We have mentioned before that we will admit extensions of the assertion lan-
guage with arbitrary functions and/or predicates that are not present in the
programming language expressions. In this setting, the semantic interpreta-
tion of assertions must be complemented with a theory provided by the user,
typically in the form of a set of axioms.

The semantic interpretation of a Hoare triple is a truth value that is indepen-
dent of states. However there is a quantification over the set of states. Notice
that a command C trivially satisfies a specification when the execution of C
fails to terminate (since there exists no s such that (C, s) ⇓ s′). A Hoare triple

9

Expressions:

[[n]](s) = n for n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}

[[x]](s) = s(x)

[[−e]](s) = −[[e]](s)

[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,

for (�, �) ∈ {(+, +), (−,−), (∗,×), (div ,÷), (mod , mod)}

[[true]](s) = true

[[false]](s) = false

[[! e]](s) = ¬[[e]](s)

[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,

for (�, �) ∈ {(==, =), (!=, 6=), (<, <), (<=,≤), (>, >), (>=,≥), (&& ,∧), (‖ ,∨)}

Commands:

1. (skip, s) ⇓ s

2. (x := e, s) ⇓ s[x 7→ [[e]](s)]

3. If (C1, s) ⇓ s′ and (C2, s′) ⇓ s′′ then (C1 ; C2, s) ⇓ s′′

4. If (Ct, s) ⇓ s′ and [[b]](s) = true then (if b then Ct else Cf , s) ⇓ s′

5. If (Cf , s) ⇓ s′ and [[b]](s) = false then (if b then Ct else Cf , s) ⇓ s′

6. If [[b]](s) = false then (while b do C, s) ⇓ s

7. If (C, s) ⇓ s′, (while b do C, s′) ⇓ s′′, and [[b]](s) = true then (while b do C, s) ⇓ s′′

Assertions:

[[true]](s) = true

[[false]](s) = false

[[! A]](s) = ¬[[A]](s)

[[A1�A2]](s) = [[A1]](s) � [[A2]](s) , for (�, �) ∈ {(&& ,∧), (‖ ,∨), (→,⇒)}

[[Forallx. A]](s) = ∀v ∈ [[int]]. [[A]](s[x 7→ v]) , with v fresh

[[Existsx. A]](s) = ∃v ∈ [[int]]. [[A]](s[x 7→ v]) , with v fresh

[[e1�e2]](s) = [[e1]](s) � [[e2]](s) ,

for (�, �) ∈ {(==, =), (!=, 6=), (<, <), (<=,≤), (>, >), (>=,≥)}

Specifications:

[[{P}C {Q}]] = ∀s, s′ ∈ Σ. [[P]](s) ∧ (C, s) ⇓ s′ ⇒ [[Q]](s′)

Fig. 2. Semantic equations and natural semantics for While

{P}C {Q} is valid if it is interpreted as true, i.e., for all states satisfying P ,
executing C either fails to terminate or terminates in a state satisfying Q.

Total Correctness. The above notion corresponds to partial correctness
specifications, since termination is not guaranteed. If termination is required,
we are in the presence of a total correctness formula and write [P]C [Q] in-
stead. The idea is that [P]C [Q] is true if and only if, for all states satisfying

10

P , executing C terminates in a state satisfying Q. Note that the validity of a
total correctness specification can be established by proving the corresponding
partial correctness specification and additionally proving termination.

We will leave the discussion of termination out of this paper, since it is rather
different in nature. Most program verification tools allow the users to specify
loop variants : expressions whose value strictly decreases with each iteration,
according to some well-founded relation. Typically non-negative integer ex-
pressions are used [42].

3 Hoare Logic

Given a specification in the form of a Hoare triple {P}C {Q}, how can its
validity be checked? One could think of testing the program by running it
with a battery of initial states satisfying the precondition P , and checking
whether Q is satisfied after execution if the program terminates. Of course,
this process cannot be exhaustive in general, and one can only expect to have
a certain degree of confidence about the validity of a specification. This would
not provide a proof of correctness.

The usual method for assuring the validity of specifications is to use a sound
program-proof system. By sound we mean that it should not infer specifica-
tions that are not valid. We will now outline a formal system for inferring valid
specifications and describe methods for mechanically verifying the correctness
of given specifications.

A program-proof system is a set of inference rules that can be seen as fun-
damental laws about programs. Before defining an inference system for our
While-language programs, let us first explain some basic concepts.

An inference rule consists of zero or more premises and a single conclusion (we
use the notation of separating the premises from the conclusion by a horizontal
line). Each rule, consisting in a number of premises and a conclusion, is in fact
a schema for a specification (that is, a pattern containing meta-variables, each
ranging over some phrase type). An instance of an inference rule is obtained
by replacing all occurrences of each meta-variable by a phrase in its range.
In some rules, there may be side conditions that must be satisfied by the
replacement. Also, there may be syntactic operations (such as substitutions)
that must be carried out after the replacement. An inference rule containing
no premises is called an axiom schema (or simply, axiom). An inference rule
is sound if and only if, for every instance, if the premises are all valid then the
conclusion is valid.

11

(skip)
{P} skip {P}

(assign)
{Q[x 7→ e]}x := e {Q}

(seq)

{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

(while)

{I && b}C {I}

{I}while b do C {I && ! b}

(if)

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

(conseq)

{P}C {Q}
if |= P ′ → P and |= Q→ Q′

{P ′}C {Q′}

Fig. 3. Inference system of Hoare logic – System H

Deductions will be presented as trees; nodes will be labelled with formulas
(specifications); the specification being proved lies at the root node, and the
immediate subtrees are deductions corresponding to the premises of the rule
instance used to infer the root specification formula. A deduction tree is also
called a derivation tree or proof tree, and it constitutes a formal proof of the
specification at its root.

The inference system of Hoare logic is shown in Figure 3. We name it system
H. Moreover, we say that a Hoare triple {P}C {Q} is derivable in this system,
and write `H {P}C {Q}, if it can be inferred from the rules of Figure 3 (in
general we will subscript the symbol ` with an inference system to denote
derivability in that system).

This system comprises one rule for each command construct in the program-
ming language, and the consequence rule, which allows us to derive a specifica-
tion from another specification by strengthening the precondition or weakening
the postcondition. Two of the command rules (skip and assign) are in fact ax-
ioms (since the do-nothing and assignment commands have no subcommands,
the rules have no premises).

The assignment rule states that a postcondition Q can be granted for a com-
mand x := e if the condition that results from substituting e for x in Q holds
as precondition. Q[x 7→ e] stands for the result of substituting e for the free
occurrences of x in Q. 2 The sequencing and conditional constructs are han-

2 In the application of a substitution to a term, we rely on a variable convention.

12

dled by rules that are quite straightforward to understand. The rule for while
commands uses the familiar notion of an invariant condition (denoted I in the
rule), preserved by executions of the loop body. Note that one does not require
that condition I holds throughout execution of the loop body; only that it is
reestablished at the end of each iteration. We remark that, as the assertion
language subsumes Boolean expressions, the Boolean condition b can be com-
bined with assertions in the (if) and (while) rules (otherwise an embedding
function would have to be applied to b).

Finally the (conseq) rule establishes a connection with predicate logic by
means of side conditions that are assertions rather than specifications. The
idea is that a specification can be derived from another specification provided
that their corresponding preconditions and postconditions are related in the
way dictated by the side conditions.

As a trivial example of using this system, consider the following proof tree
concerning a single-instruction program, which is built from an instance of
rule schema (conseq) and an instance of axiom schema (assign).

{x + 1 > 10}x := x + 1 {x > 10}
if |= x > 10→ x + 1 > 10 and |= x > 10→ x > 10

{x > 10}x := x + 1 {x > 10}

We remark that the side conditions concern the validity of purely first-order
formulas (with no occurrences of program constructs). The compositional
rules, associated with the program constructs of the language, depend on
the semantics of commands but are independent of the interpretation of data
types and arithmetic operations. It is the rule of consequence that brings data-
specific assertions to bear on the proofs of specifications, through the intro-
duction of side conditions.

Different presentations of the consequence rule can be found in the literature;
some authors prefer to include the side conditions as premises in the rule. Ob-
serve however that care must be taken interpreting the following very common
presentation of the rule

P ′ → P {P}C {Q} Q→ Q′

{P ′}C {Q′}

In particular, program variables that occur in P ′ → P and Q → Q′ must be
seen as universally quantified locally to those formulas, and not globally in
the rule, which would be the usual interpretation in a natural deduction-like
presentation.

The action of a substitution over a term is defined, as usual, with possible renaming
of bound variables.

13

Because of the presence of the consequence rule, Hoare logic is not meant
to be used by itself; it must always be accompanied by some device for es-
tablishing the validity of side conditions, such as a decision procedure based
on satisfiability, or an inference system for first-order logic (usually known
as predicate calculus). Naturally, this device should be adequate for reason-
ing about the concrete language of expressions of the programming language
(which in our case implies reasoning with integer arithmetics), also taking into
account, if applicable, user-provided axioms concerning additional functions
and predicates of the assertion language.

Finally, note that it is an immediate consequence of the above discussion that
reasoning about programs (with a first-order assertion language) is in general
not decidable.

We will now address the relationship between system H and the semantics
of the language. All of the subsequent material relies on the fact that the
inference system is sound: if some Hoare triple can be proved using system H,
then it is indeed valid according to the semantics.

Proposition 2 (Soundness) In system H every derivable specification is se-
mantically valid. That is, if `H {P}C {Q}, then [[{P}C {Q}]] = true.

Proof. By induction on the derivation of `H {P}C {Q}. For the while case we
also proceed by induction on the definition of the evaluation relation. 2

The classic reference on Hoare logic is [45]. The original ideas of Hoare had
their roots in the work of Floyd, who had proposed a similar system for
flowcharts [38]. For this reason Hoare logic is also known as Floyd-Hoare logic.
Several papers survey its technical development [2, 21] and its historical devel-
opment and impact [54]. In this paper we focus on applying Hoare logic in the
context of program verification; its use in the software development process is
covered in detail in textbooks [4, 81].

Bertot [11] has formalised in the calculus of inductive constructions the se-
mantics (both operational and denotational) of a language like the one con-
sidered in this paper. A so-called deep embedding of the inference system of
Hoare logic is given (the rules are encoded as cases of the inductive definition
of a predicate), and correctness with respect to the operational semantics is
proven. This very instructive work is available as part of an integrated Coq
development (see Section 11) that covers many aspects of the semantics of
programming languages. We will come back to this development in Section 7.

14

4 Verification Conditions and VCGens

With the help of a theorem prover or proof assistant, Hoare logic can be put
into practice to produce a program verification system. This can be done in
two ways. The first is by directly encoding the inference system in the logic of
the proof tool and reasoning simultaneously with rules of both Hoare logic and
first-order logic as required: reasoning starts with the former but switches to
the latter logic when side conditions are introduced by the consequence rule.

The alternative approach, which is prevalent in modern program verification
systems, is organised in two steps as follows:

(1) A proof tree is constructed for the desired specification, assuming that
the side conditions generated by the consequence rule are valid.

(2) An external proof tool is used (such as a theorem prover or a proof
assistant) to actually establish the validity of the side conditions.

We let A
H {P}C {Q}, where A represents a set of first-order assertions,
denote the fact that there exists a derivation tree of {P}C {Q} in system
H such that A is the set of side conditions in that tree (in general we will
subscript the symbol
 with an inference system to denote the existence of a
proof tree in that system with a given set of side conditions).

Note that the soundness of this approach to verification is immediate: if A
H

{P}C {Q} and all the assertions of A hold, then `H {P}C {Q}. The first
step is said to generate proof obligations (the elements of A) that must then
be discharged in the second step. In the context of program verification these
proof obligations are usually known as verification conditions.

The advantage of this method lies on its flexibility. Since program constructs
do not occur in the assertions in A, the second step involves only discharg-
ing first-order proof obligations, for which a great number of proof tools can
be used interchangeably or even cooperatively. It is also easier to modify a
program verification system organized in this way. For instance if the pro-
gramming language is modified, only the first step above is affected.

Clearly the inference system allows for different proof trees to be constructed
for the same conclusion specification, and in fact these trees may well have
different sets of side conditions. This tree construction process can be replaced
by a simple algorithm – a Verification Conditions Generator (VCGen) – that
constructs a set of verification conditions by applying a specific strategy, i.e.
the algorithm produces verification conditions that correspond to the side
conditions of one particular derivation.

VCGen algorithms will be given as functions that take as input a Hoare triple

15

and return a set of first-order proof obligations. A side condition of the form
|= P → Q will give rise to a verification condition written as [P → Q], where
the [·] notation represents the processing that may be required to export
proof obligations to the target proof tool.

This processing may require more than just translating assertions into the
language of the tool; one typical operation corresponds to calculating the uni-
versal closure of an assertion, by making explicit the universal quantification
over program variables that is implicit in the notion of validity (i.e. truth in
all states) of side conditions. For instance, the side condition |= x > 10 →
x + 1 > 10 in the earlier example would generate the verification condition
[x > 10 → x + 1 > 10], which in turn could be exported as the formula
Forallx. x > 10→ x+ 1 > 10.

We remark that there are two possible sources of errors that may cause the
verification of a given Hoare triple to fail. These are:

(1) program errors ; and
(2) specification errors : the program may be correct with respect to the in-

tended specification, but the specification has not been correctly for-
malised (there are errors in the preconditions or postconditions).

In the rest of this paper we will study several VCGen algorithms and show
how they are obtained from the inference system H or some other related
system. Our first step is to study how the construction of derivations of H can
be mechanised.

5 An Alternative Formulation of Hoare Logic

We now focus on using Hoare logic to produce verification conditions, as part of
the verification architecture outlined in the previous section. Given a specifica-
tion, we wish to construct a proof tree having that specification as conclusion;
verification conditions result from the side conditions of instances of rules in
that tree.

There are two desirable properties that the inference system of Hoare logic
should enjoy to make possible the automatic construction of proof trees.

(1) The subformula property: the premises of a rule should not contain oc-
currences of assertions that do not occur in the rule’s conclusion. In other
words, all the assertions that occur in the premises should be subformulas
of those occurring in the conclusion. Otherwise one would have to invent
formulas when applying the rule in a backward fashion.

16

if |= P → Q

{P} skip {Q}
if |= P → Q[x 7→ e]

{P}x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b→ Q

{P}while b do C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 4. Goal-directed version of Hoare logic – System Hg

(2) Unambiguity: a unique rule should be applicable in a backward fashion
for any given goal, so that the construction of derivation trees can be
syntax-directed.

We start with the second property. The system H of Hoare logic can easily be
transformed into an equivalent unambiguous system; observe that ambiguity
is only caused by the presence of the consequence rule. In particular, note
that some rules are only applicable to goals that satisfy certain constraints,
namely:

• the (skip) rule can only be applied if the precondition and the postcondition
are equal;
• the (assign) rule for assignment can only be applied if the precondition re-

sults from the postcondition by performing the corresponding substitution;
• the (while) rule can only be applied if the precondition is an invariant of

the loop, and the postcondition is the same invariant strengthened with the
negation of the loop condition.

Application of these three rules to goals with arbitrary preconditions and
postconditions may previously require the application of the consequence rule.
This becomes unnecessary if the weakening/strengthening conditions are ju-
diciously distributed through the program rules. This is precisely the case in
the system of Figure 4.

This new system may be called a goal-directed system, since it consists of
exactly one rule for each program construct, and moreover, for a given speci-
fication {P}C {Q}, the rule matching the program C can always be applied
(if the side conditions are met), since the precondition and postcondition are
now arbitrary. We name it system Hg, and we let `Hg {P}C {Q} denote the

17

fact that {P}C {Q} can be inferred from the rules of Figure 4.

It is easy to see that the (conseq) rule is admissible in system Hg, and that
systems H an Hg are equivalent.

Lemma 3 If `Hg {P}C {Q} and both |= P ′ → P and |= Q → Q′ hold, then
`Hg {P ′}C {Q′}.

Proof. By induction on the derivation of `Hg {P}C {Q}. 2

Proposition 4 `H {P}C {Q} iff `Hg {P}C {Q} .

Proof. ⇒) By induction on the derivation of `H {P}C {Q}, using Lemma 3.
⇐) By induction on the derivation of `Hg {P}C {Q}. 2

We remark that this new system still does not enjoy the subformula property.
In fact, although we have removed two rules that did not enjoy the property,
we have also caused the while rule to lose that property since the invariant
assertion no longer occurs in the conclusion. Moreover the rule for the sequence
construct does not enjoy the property either, since the intermediate assertion
R does not occur in the conclusion.

In fact, attaining the subformula property, and the possibility of automated
proof construction, requires the programmer to provide some extra informa-
tion.

6 Program Annotations

A fully automated verification process would require mechanisation at different
levels. In particular, one would have to be able to generate loop invariants and
to establish the validity of first-order conditions mechanically (admittedly, an
impossible goal). In Section 11 we discuss advances in both of these areas. For
now, we concentrate on another, much easier aspect, which is automating the
process of reasoning with Hoare logic.

One way to restore the subformula property in our current system for Hoare
logic is precisely to introduce human-provided annotations in the programs.
An annotated program is a program with assertions embedded within it. In-
serted assertions should express conditions one expects to hold whenever con-
trol reaches the points at which they occur. Let AComm be the class of

18

if |= P → Q

{P} skip {Q}
if |= P → Q[x 7→ e]

{P}x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; {R} C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b→ Q

{P}while b do {I}C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 5. Goal-directed version of Hoare logic for annotated programs – System Hga.

annotated commands. Its abstract syntax is defined by

AComm 3 C ::= skip | C ; {A}C | x := e | if b then C else C | while b do {A}C

For instance the annotated command

while b do {I}C

denotes a loop with condition b, instruction body C, and (user-provided) in-
variant I. Naturally, the introduction of the loop invariant plays no role in the
execution semantics of the loop. Similarly, the command sequence

C1 ; {R} C2

has the same semantics as C1 ; C2, but is annotated with an assertion that
must be true when the execution of C1 (started in a state in which any given
preconditions of the combined command hold) terminates.

An inference system of Hoare logic for annotated programs is shown in Fig-
ure 5. We name it system Hga. Note that this system enjoys the subformula
property, and can be used mechanically in a backward fashion to generate
verification conditions. We will exemplify its use with a classic program. This
example also illustrates the need to extend the assertion language with a vo-
cabulary of function symbols.

Example 5 Consider the program for calculating Fibanocci numbers in Fig-
ure 6. The annotated program CA

Fib shown in b) is the result of annotating CFib

shown in a) in an ad hoc way.

19

a) Program CFib b) Annotated program CA
Fib

x := 1 ;

y := 0 ;

i := 1 ;

while i < n do

{

aux := y ;

y := x ;

x := x + aux ;

i := i + 1

}

x := 1 ;

{x == 1}

y := 0 ;

{x == 1 && y == 0}

i := 1 ;

{x == 1 && y == 0 && i == 1}

while i < n do {i ≤ n && x == Fib(i) && y == Fib(i− 1)}

{

aux := y ;

{i ≤ n && x == Fib(i) && aux == Fib(i− 1)}

y := x ;

{i < n && x == Fib(i) && y == Fib(i) && aux == Fib(i− 1)}

x := x + aux ;

{i ≤ n && x == Fib(i) + Fib(i− 1) && y == Fib(i)}

i := i + 1 ;

}

Fig. 6. Example program: Fibonacci

We extend the vocabulary of the assertion language with a function Fib with
arity 1. This function will be transparent from the point of view of verification
condition generation, and it may naturally occur in the proof obligations. To
give meaning to this function, we provide a theory consisting of the following
axioms:

Fib(0) == 0

Fib(1) == 1

Forallx. x > 1→ Fib(x) == Fib(x− 1) + Fib(x− 2)

Observe that we could have chosen to extend the language with a predicate of
arity 2 instead, where the second argument stands for the Fibonacci number
of the first. We also remark the following:

• The invariant states that variables x and y are used to store respectively
the Fibonacci numbers for i and i − 1, together with an obvious condition
regarding a bound for i.
• The annotations in the sequence of assignment instructions preceding the

loop basically store the current state of the program.
• Inside the loop body, the annotated state is reset, since all that is known

when execution enters this sequence of instructions in a particular iteration

20

is that the invariant was initially valid. The annotations are then propagated
forward from the invariant with each assignment instruction.

• The annotations are somewhat optimised. For instance after the first in-
struction in the loop body, since y is about to lose its present value, there is
no need to keep the old value in the annotation. Similarly, aux is dropped
from the annotation as soon as it is clear that it will no longer be required.

Let us consider the following specification for this annotated program CA
Fib

{n > 0}CA
Fib {x == Fib(n)}

Suppose we take composition of programs to be right-associative and let C be
the body of the loop; then applying the rule for the sequence construct we obtain
the following two proof obligations

{n > 0}

x := 1 ; {x == 1} y := 0 ; {x == 1 && y == 0} i := 1

{x == 1 && y == 0 && i == 1}

and
{x == 1 && y == 0 && i == 1}

while i < n do {i ≤ n && x == Fib(i) && y == Fib(i− 1)}C

{x == Fib(n)}

The former will generate trivial verification conditions, and for the latter,
applying the loop rule yields two verification conditions, namely

|= x == 1 && y == 0 && i == 1→ i ≤ n && x == Fib(i) && y == Fib(i− 1)

and
|= i ≤ n && x == Fib(i) && y == Fib(i− 1) && ! (i < n)→ x == Fib(n)

together with the proof obligation corresponding to the loop invariant preser-
vation,

{i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n}C {i ≤ n && x == Fib(i) && y == Fib(i− 1)}

The reader is invited to continue this example through to the end. We will
return to it in subsequent sections.

Note that if the annotations introduced in a program are ‘wrong’ (for instance,
the user provides as loop invariant a property that is not preserved by the loop
body), there is no risk of corrupting the soundness of the verification process:
simply, proof obligations will be created that cannot be proved.

Each choice of annotations leads to the construction of a unique tree in system
Hga for a given Hoare triple (possibly a proof tree if the side conditions are

21

valid). In system Hg for non-annotated programs, many different proof trees
are admissible for the same specification. However, if a Hoare triple for an an-
notated program is derivable in system Hga, then the corresponding triple for
the program without annotations is derivable in system Hg. To formally state
this property we first define an erasure function erA : AComm → Comm
inductively as follows

erA(skip) = skip

erA(x := e) = x := e

erA(C1; {R}C2) = erA(C1); erA(C2)

erA(if b then Ct else Cf) = if b then erA(Ct) else erA(Cf)

erA(while b do {I}C) = while b do erA(C)

Proposition 6 If `Hga {P}C {Q}, then `Hg {P} erA(C) {Q}.

Proof. By induction on the derivation of `Hga {P}C {Q}. 2

We say that a program C is correctly annotated with respect to a specification
(P,Q) if `Hga {P}C {Q} whenever `Hg {P} erA(C) {Q}.

Note that additionally to the sources of errors identified in Section 4, annota-
tions provide a new opportunity for errors to occur. Annotation errors occur
when a program has been annotated with assertions that may not hold when
the corresponding program point is reached during execution, which may well
cause the verification of the program to fail.

It is clear from the above example that annotating programs is a mostly tedious
activity. This is true in particular for intermediate assertions in sequences of
commands. Fortunately, these assertions can easily be inferred mechanically,
if the program is seen in the context of a specification. Consider for instance
the Hoare triple

{x == 5 && y == 10}

aux := y ;

y := x ;

x := x + aux ;

{x > 10 && y == 5}

One possible correct way to annotate this sequence of commands is to work
backwards from the postcondition to obtain a precondition for each atomic
command (in this example it suffices to use the assignment rule). The alter-
native would be to propagate the precondition forward. Figure 7, a) and b),
illustrates these two approaches.

The two annotation strategies exemplified in Figure 7 will in the next two
sections be explored and give rise to two different VCGen algorithms, that

22

{x == 5 && y == 10}

aux := y ;

{x + aux > 10 && x == 5}

y := x ;

{x + aux > 10 && y == 5}

x := x + aux ;

{x > 10 && y == 5}

{x == 5 && y == 10}

aux := y ;

{x == 5 && y == 10 && aux == 10}

y := x ;

{x == 5 && y == 5 && aux == 10}

x := x + aux ;

{x > 10 && y == 5}

a) Backward propagation of the postcondition b) Forward propagation of the precondition

Fig. 7. Annotation propagation

if |= P → Q

{P} skip {Q}
if |= P → Q[x 7→ e]

{P}x := e {Q}

{P}C1 {R} {R}C2 {Q}

{P}C1 ; C2 {Q}

{I && b}C {I}
if |= P → I and |= I && ! b→ Q

{P}while b do {I}C {Q}

{P && b}Ct {Q} {P && ! b}Cf {Q}

{P} if b then Ct else Cf {Q}

Fig. 8. Goal-directed Hoare logic with annotated while-loops – System Hgi.

work on programs annotated with loop invariants only. We shall now state
some lemmas concerning such programs.

We let IComm denote the class of programs with annotated while commands.
Its abstract syntax is defined by

IComm 3 C ::= skip | C ; C | x := e | if b then C else C | while b do {A}C

An inference system of Hoare logic for IComm programs is shown in Figure 8.
We call it system Hgi.

Of course, every derivation of a Hoare triple in Hgi has a correspondence in Hg.
To state this property formally we define an erasure function erI : IComm→

23

Comm similar to erA (with the obvious adaptation).

Proposition 7 If `Hgi {P}C {Q}, then `Hg {P} erI(C) {Q}.

Proof. By induction on the derivation of `Hgi {P}C {Q}. 2

For C ∈ IComm, P,Q ∈ Assert, we say that C is correctly annotated wrt.
(P,Q) if `Hgi {P}C {Q} whenever `Hg {P} erI(C) {Q}.

Lemma 8 If `Hgi {P}C {Q}, then C is correctly annotated wrt. (P,Q).

Proof. Trivial, regarding the definition of correctly annotated program. 2

Lemma 9 If C is correctly annotated wrt. (P,Q) and both |= P ′ → P and
|= Q→ Q′ hold, then C is correctly annotated wrt. (P ′, Q′).

Proof. Immediate from Lemma 3. 2

Lemma 10

(1) If `Hg {P} erI(C1) ; erI(C2) {Q} and C1 ; C2 is correctly annotated wrt.
(P,Q), then, for some assertion R, C1 is correctly annotated wrt. (P,R),
C2 is correctly annotated wrt. (R,Q) and both `Hg {P} erI(C1) {R} and
`Hg {R} erI(C2) {Q} hold.

(2) If `Hg {P} if b then erI(Ct) else erI(Cf) {Q} and if b then Ct else Cf

is correctly annotated wrt. (P,Q), then Ct is correctly annotated wrt.
(P && b,Q), Cf is correctly annotated wrt. (P && ! b,Q) and both `Hg

{P && b} erI(Ct) {Q} and `Hg {P && ! b} erI(Cf) {Q} hold.

Proof. Both (1) and (2) are proved by definition of correctly annotated pro-
gram, case analysis on the rules of system Hgi, Lemma 8 and Proposition 7.
2

Gordon [41] has proposed a mechanisation of Hoare logic in the HOL proof
assistant, which includes derivations of the inference rules of Hoare logic from
a semantic description of the language. A system that is close to system Hga
is also proposed.

In Gordon’s system these rules are not seen as inference rules; they are instead
used to define tactics for the prover. A tactic is a function used to advance
the proof construction, i.e. it is applied to the current proof state to produce
subgoals of the present goal. In Gordon’s system the VCGen is itself imple-
mented as a tactic. The system incorporates notions that will be explained in

24

wprec(skip, Q) = Q

wprec(x := e, Q) = Q[x 7→ e]

wprec(C1; C2, Q) = wprec(C1, wprec(C2, Q))

wprec(if b then Ct else Cf , Q) = (b→ wprec(Ct, Q)) && (! b→ wprec(Cf , Q))

wprec(while b do {I}C, Q) = I

Fig. 9. Definition of weakest precondition for IComm programs: wprec

the next section, so we will return to it.

Gordon uses a so-called shallow embedding of the language into the proof sys-
tem’s logic, which precludes proving the assignment axiom as a HOL theorem
(it is a meta-level property). Homeier and Martin [47] use a deep embedding
instead and achieve a proof of correctness for a VCGen; their work very likely
reports the first fully verified VCGen.

The difference between a shallow and a deep embedding is dictated by the way
in which the represented languages (for programs and assertions) are related to
the object language of the theorem prover – either as extensions to the latter,
or constructed with separate data types. See [3] for a survey on representing
Hoare logic in the language of a theorem prover, and the different embedding
possibilities.

7 Weakest Preconditions

Backward propagation of assertions can be realized through the use of weakest
preconditions. Given a program C ∈ IComm and a postcondition Q, we
calculate an assertion wprec(C,Q) such that {wprec(C,Q)}C {Q} is valid and
moreover if {P}C {Q} is valid for some P then |= P → wprec(C,Q). Thus
wprec(C,Q) is the weakest precondition that grants the truth of postcondition
Q after terminating executions of C.

Weakest preconditions are implicit in Hoare logic, in the way that the assign-
ment axiom propagates postconditions backwards: Q[x 7→ e] is the weakest
precondition for Q to hold after execution of x := e. The explicit definition
of wprec given in Figure 9 propagates postconditions backwards through the
remaining program constructs.

In the sequence command, the weakest precondition of the second command
is fed as postcondition to the first command, to obtain the precondition of

25

the combined command. The clause for conditional is also straightforward
to understand: the weakest precondition of such a command is the weakest
precondition of the appropriate branch (calculated considering the same post-
condition), depending on the value of the Boolean condition.

In general, since the number of iterations may not be known at compile time,
the weakest precondition of a loop cannot be calculated statically – perform-
ing a one-step expansion of a while command (using conditional) and trying
to derive the weakest precondition from that expansion leads to a recursive
equation. However, for the case of loops annotated with invariants, the weak-
est precondition can be defined to be precisely the invariant assertion. The
reason for this is that all the reasoning about the behaviour of loops depends
on the invariants being granted as preconditions. In an annotated program,
the invariant of a loop is thus the weakest precondition required for any post-
condition to hold.

Proposition 11 If C ∈ IComm is correctly annotated wrt. (P,Q) and `Hg

{P} erI(C) {Q}, then

(1) `Hgi {wprec(C,Q)}C {Q}
(2) |= P → wprec(C,Q)

Proof. By induction on the structure of C, and using lemmas 3, 8 and 10 for
(1) and 3, 9 and 10 for (2). 2

Figure 10 contains the straightforward definition of a VCGen obtained from
system Hgi by using wprec as an auxiliary function. The following lemma states
that the verification conditions produced by this algorithm, for a given Hoare
triple, are exactly the side conditions of a derivation tree of that triple in
system Hgi.

Lemma 12 For any C ∈ IComm,VC({P}C {Q})
Hgi {P}C {Q}

Proof. By induction on the structure of C. 2

Before looking at an example, we remark the following. The VCGen is implic-
itly constructing a derivation of Hg following a fixed strategy. This consists in
always constructing the subderivation corresponding to the second subcom-
mand in any sequence command, until the intermediate condition is attained,
at which point the first subderivation can then be constructed. This results in
the derivation that would be constructed in Hga if the program was previously
annotated with the intermediate conditions calculated by wprec.

Example 13 Figure 12 shows the application of the VCGen algorithm to our

26

VC({P} skip {Q}) = {[P → Q]}

VC({P}x := e {Q}) = {[P → Q[x 7→ e]]}

VC({P}C1 ; C2 {Q}) = VC({P}C1 {wprec(C2, Q)}) ∪ VC({wprec(C2, Q)}C2 {Q})

VC({P}while b do {I}C {Q}) = {[P → I], [I && ! b→ Q]} ∪ VC({I && b}C {I})

VC({P} if b then Ct else Cf {Q}) = VC({P && b}Ct {Q}) ∪ VC({P && ! b}Cf {Q})

Fig. 10. A VCGen for IComm based on weakest preconditions: VC

C′



A0 = {1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)}

x := 1 ;

A1 = {1 ≤ n && x == Fib(1) && 0 == Fib(1− 1)}

y := 0 ;

A2 = {1 ≤ n && x == Fib(1) && y == Fib(1− 1)}

i := 1 ;

I = {i ≤ n && x == Fib(i) && y == Fib(i− 1)}

while i < n do { i ≤ n && x == Fib(i) && y == Fib(i− 1)}

C′′



{

aux := y ;

A3 = {i + 1 ≤ n && x + aux == Fib(i + 1) && x == Fib((i + 1)− 1)}

y := x ;

A4 = {i + 1 ≤ n && x + aux == Fib(i + 1) && y == Fib((i + 1)− 1)}

x := x + aux ;

A5 = {i + 1 ≤ n && x == Fib(i + 1) && y == Fib((i + 1)− 1)}

i := i + 1 ;

}

Fig. 11. Fibonacci with annotated loop: CI
Fib

running example program. The intermediate conditions (generated as weakest
preconditions by wprec) are shown in Figure 11 as annotations in the program,
for the sake of readability.

Observe that while all the conditions generated are straightforward to prove,
most are tautological, of the form [Q → Q] for some Q. The ones that are
not are

(1) [n > 0 → 1 ≤ n && 1 == Fib(1) && 0 == Fib(1 − 1)], which states
that the precondition in the specification is stronger than the weakest pre-
condition calculated for the program;

(2) [I && i < n → i + 1 ≤ n &&x + y == Fib(i + 1) &&x == Fib((i +

27

VC({n > 0}CI
Fib {x == Fib(n)})

= VC({n > 0}x := 1 {A1}) ∪ VC({A1} y := 0 {A2}) ∪ VC({A2} i := 1 {I}) ∪

VC({I}while i < n do {I}C′′ {x == Fib(n)})

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)]} ∪

{[A1 → A1]} ∪ {[A2 → A2]} ∪

{[I → I], [I && ! (i < n)→ x == Fib(n)]} ∪ VC({I && i < n}C′′ {I})

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)],

[A1 → A1], [A2 → A2], [I → I], [I && ! (i < n)→ x == Fib(n)],

[I && i < n→ i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1)],

[A3 → A3], [A4 → A4], [A5 → A5]}

Fig. 12. Fibonacci example: verification conditions obtained with VC.

1)−1)], which corresponds to the preservation of the loop invariant; and
(3) [I && ! (i < n)→ x == Fib(n)], corresponding to the “use case” upon

termination of the loop, which must imply the postcondition in the Hoare
triple.

The reason why this VCGen generates many tautological conditions is that
for any command of the form C1 ; x := e with postcondition Q, a precondition
wprec(x := e,Q) will be generated for the assignment command. Conditions
like the following will proliferate

VC({wprec(x := e, Q)}x := e {Q}) = [Q[x 7→ e]→ Q[x 7→ e]]

It is however possible to define a VCGen that eliminates these unnecessary
conditions. The trick is to calculate verification conditions independently of
preconditions. The VCGen in Figure 13, that we call VCG, uses an auxiliary
recursive function VCaux that does exactly this.

Note that for any sequence of assignments VCG generates a sole verification
condition. This is a consequence of the following lemma.

Lemma 14 VCaux(C1 ; C2 ; . . . ; Cn, Q) = ∅, if each Ci is either a skip or an
assignment.

Proof. By induction on the length of the sequence C1 ; C2 ; . . . ; Cn. 2

The verification conditions for a Hoare triple {P}C {Q} are then calculated by
adding to the set VCaux(C,Q) a condition explicitly relating P and the weakest
precondition wprec(C,Q). This may be seen as the principal verification con-
dition, obtained from the backward propagation of the postcondition, whereas
VCaux(C,Q) calculates secondary verification conditions resulting from loops.

28

VCaux(skip, Q) = ∅

VCaux(x := e, Q) = ∅

VCaux(C1; C2, Q) = VCaux(C1, wprec(C2, Q)) ∪ VCaux(C2, Q)

VCaux(if b then Ct else Cf , Q) = VCaux(Ct, Q) ∪ VCaux(Cf , Q)

VCaux(while b do {I}C, Q) = {[(I && b)→ wprec(C, I)]} ∪ VCaux(C, I) ∪ {[(I && ! b)→ Q]}

VCG({P}C {Q}) = {[P → wprec(C, Q)]} ∪ VCaux(C, Q)

Fig. 13. An improved VCGen: VCG

VCG({n > 0}CI
Fib {x == Fib(n)})

= {[n > 0→ wprec(CI
Fib, x == Fib(n))]} ∪ VCaux(CI

Fib, x == Fib(n))

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)]} ∪ VCaux(C′, I) ∪

VCaux(while i < n do {I}C′′, x == Fib(n))

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)]} ∪ ∅ ∪

{[I && i < n→ wprec(C′′, I)]} ∪ VCaux(C′′, I) ∪ {[I && ! (i < n)→ x == Fib(n)]}

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)],

[I && i < n→ i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1)],

[I && ! (i < n)→ x == Fib(n)]}

Fig. 14. Fibonacci example, using VCG

It is easy to see that, for a given Hoare triple, the verification conditions
generated by VCG entail the ones generated by VC.

Lemma 15 If |= VCG({P}C {Q}), then |= VC({P}C {Q}).

Proof. By induction on the structure of C. 2

Proposition 16 (Correctness of VCG) Let C ∈ IComm and P,Q ∈ Assert
such that |= VCG({P}C {Q}). Then `Hg {P} erI(C) {Q}.

Proof. Immediate by lemmas 12 and 15, and Proposition 7. 2

Figure 14 illustrates the use of this VCGen. We remark that, since wprec and
VCaux perform similar traversals of the program structure, they could be fused
into a single function using the well-known tupling technique of functional
programming.

29

Bertot’s Coq development on program semantics [11] (see Section 3) includes
both the definition of the VC as a recursive function, and its proof of correct-
ness.

Gordon’s VCGen [41] (see Section 6) is very similar to the VCG presented
in this section; the difference is that his algorithm does not require invoking
an external function for calculating weakest preconditions; instead sequence
commands are required to be partially annotated. A sequence command of the
form C1 ; x := e does not need an annotation, but all other sequences have to
be annotated with an intermediate assertion, as in C1 ; {R} C2. This system
thus stands between Hga and Hgi.

Weakest preconditions were introduced by Dijkstra [29] from a semantic per-
spective. The idea was to interpret programs as predicate transformers – map-
pings of postconditions into preconditions. Dijkstra used a more abstract pro-
gramming language based on guarded commands, and in fact some modern
and very advanced tools for program verification are based on such a lan-
guage. This will be the topic of Section 8.

A Note on Auxiliary Variables. There is a problem with the specifica-
tion of Fibonacci that we have been using as a running example. The spec-
ification (n > 0, x == Fib(n)) has trivial solutions, since nothing prevents
the program from modifying the value of the input variable n. Thus the triple
{n > 0}n := 0 ; x := 0 {x == Fib(n)} is a valid Hoare triple.

The problem can be avoided with the use of an auxiliary variable to record
the value of n in the pre-state. The triple

{n > 0 &&n == n0}F {x == Fib(n) &&n == n0}

solves the problem as long as n0 is indeed auxiliary, i.e. it is not used as a
program variable in F . Hoare logic has no explicit support for auxiliary vari-
ables: it is not possible to write the specification above in a way that formally
prevents n0 from being modified by F . This is particularly relevant if one is
interested in doing modular verification, since one may have to reason about
a program that calls an external procedure for which only the specification,
and not the code, is available (see Section 10.3 below).

In the context of program verification tools, a common alternative to auxiliary
variables consists in enriching the assertion language with an operator allowing
one to refer to the value of an expression at a given program point.

For instance, our example specification could be written

{n > 0}F {x == Fib(n) &&n == old(n)}

30

or simply

{n > 0}F {x == Fib(old(n))}

where old(n) refers to the value of n in the initial state in which F is executed.

The generation of verification conditions can be altered to cope with this
operator by first substituting, for every occurrence of the operator in the
postcondition, x0 for old(x), where x0 is a fresh auxiliary variable, and at the
same time strengthening the precondition with the equality formula x == x0.

8 Guarded Commands

We take a detour here to briefly consider a variant of Dijkstra’s guarded com-
mands language and Weakest Precondition Calculus (WPC). The calculus
provides a verification conditions generator, and guarded commands, although
apparently very abstract, are used as intermediate language by at least two
standard program verification tools.

The language is different from the programming language we have been con-
sidering in a number of ways. First, there is no distinction between Boolean
expressions and assertions. The language contains two primitives that test
the value of assertions: the commands assert b and assume b both behave
like skip if b evaluates to true. The difference is that the former terminates
abruptly if b evaluates to false, whereas the latter cannot be executed. It is
thus a partial command that can be used as a guard for the execution of a
subsequent command.

Another aspect is the presence of a non-deterministic choice operator. The
command C1 8 C2 will arbitrarily execute either C1 or C2.

The expression wp.C.Q denotes the weakest precondition such that Q holds as
a postcondition if the command C terminates. The following calculus defines
the weakest precondition semantics of the language.

wp.(assert b).Q = b &&Q

wp.(assume b).Q = b→ Q

wp.(x := e).Q = Q[x 7→ e]

wp.(C1;C2).Q = wp.C1.(wp.C2.Q)

wp.(C1 8 C2).Q = wp.C1.Q && wp.C2.Q

31

Given a program C, the verification condition generated for the partial cor-
rectness Hoare triple {P}C {Q} is given by

VC({P}C {Q}) = [P → wp.C.Q]

In fact, since it corresponds to partial correctness, this notion is usually known
as the weakest liberal precondition.

Two crucial constructs of an imperative language – conditionals and loops –
are missing from the guarded commands language, but they can be encoded,
i.e. translated into guarded commands that generate the appropriate weakest
preconditions. The command if b then Ct else Cf can be encoded as

(assume b ; Ct) 8 (assume ! b ; Cf)

where b and ! b are used as guards in a choice command, which has the effect
of removing non-determinism since it is certain that one of the commands
cannot be executed.

Loops can be encoded in a number of ways. If one is willing to give up on
soundness and check that the invariant holds for only a limited number of
iterations, the loop while b do {I}C can simply be encoded as follows

assert I ;

(assume b ; C ; assert I ; assume false) 8 (assume ! b)

Here the loop is taken to execute at most once but this can easily be expanded
to an arbitrary fixed number of iterations. The effect of the first assert com-
mand is to test the invariant in the initial conditions; the first branch of the
choice command tests its preservation by an iteration of the loop body; the
second branch establishes the falsity of the loop condition on exit. Note that if
the choice selects the first branch, the second branch will inevitably be selected
when assume false is reached (the command in the first branch cannot be
executed in its entirety), thus this encodes a loop that iterates at most once.

To test the preservation of the invariant in an arbitrary iteration of the loop
requires to identify all the variables (say x1, . . . , xn) assigned in the loop body,
and to assign them arbitrary values. Fresh variables (y1, . . . , yn) can be used
to this effect. The following translation of the loop first tests that the invariant
is initially true, then resets the values of variables, and assumes the truth of
the invariant for the current arbitrary state. The choice command that follows
is the same as before, but the first branch is now testing the preservation of

32

the invariant in an arbitrary iteration.

assert I ;

x1 := y1 ; . . . ; xn := yn ;

assume I ;

(assume b ; C ; assert I ; assume false) 8 (assume ! b)

The specific guarded command language presented in this section has been
widely used as a core language in the development of at least two major tools
for checking the behaviour of programs: the ESC [65, 63, 17] family of tools
(of which ESC/Modula3, ESC/Java and ESC/Java2 are instances) and more
recently Boogie [5], a generic VCGen that is being used notably with the
Spec# language. Both tools are capable of generating verification conditions
as proof obligations for the Simplify [28] prover, but Boogie supports more
recent and advanced proof tools.

ESC stands for “extended static checking”; its emphasis was more on pro-
viding programmers with tools that could find common errors (such as null
dereferencing) rather than on program verification. Boogie is a very sophis-
ticated tool that integrates advanced features such as automatic inference
of loop invariants. It is a generic VCGen in the sense that different program-
ming languages can be translated into the BoogiePL language (in a sound way
with respect to the generated verification conditions). VC generation based on
weakest preconditions has been advanced with the development of Boogie to
cover, for instance, programs containing both loops and goto statements [6].

Both tools can be used with complex annotation languages for real-world
programs. For instance ESC/Java uses JML (a standard annotation language
for Java programs, see Section 11), and Boogie has been used as a VCGen
for Spec# (similar to JML but for C# programs). In both tools the guarded
command language is used as an intermediate language into which source code
is translated; verification conditions are generated by applying the weakest-
precondition calculus.

An important result was proposed as part of the development of ESC. The
simple definition of weakest precondition given above generates VCs whose size
is potentially exponential in the size of the source code. Two clauses in the
definition of wp are responsible for this: the case of the assignment command
x := e, which may have to create as many copies of the expression e as there
are occurrences of x in the postcondition Q; and the choice command, which
duplicates Q.

This problem can be fixed [37, 64] by using a two-stage algorithm that pro-

33

duces VCs that are worst-case quadratic in size (and usually close to linear).
The idea is that guarded commands are first translated into a passive form,
where assignments are eliminated, replaced by assume commands and fresh
variables for each assigned variable. For instance, x := x + 1; assertx > 0
becomes assumex1 = x + 1 ; assertx1 > 0. This translation preserves the
weakest precondition semantics, and while it may increase the size of the code,
this growth is worst-case quadratic and near linear in practice.

Passive commands may not affect the state of programs since they do not
contain assignment statements. The semantics of two programs may differ only
with respect to termination: programs may terminate normally or erroneously.
The weakest preconditions wp.C.true and wp.C.false characterize respectively
the states from which C may not terminate erroneously and the states from
which C may not terminate normally. The weakest precondition for a given
postcondition Q can then be written as

wp.C.Q = wp.C.true && (! wp.C.false → Q)

The resulting condition is worst-case quadratic in the size of the code.

The weakest precondition technique is quite flexible. For instance it is easy
to treat erroneous termination explicitly by calculating weakest preconditions
with respect to two postconditions. The following extended definition ensures
a given postcondition Q if the program terminates normally and a possibly
distinct postcondition R if it terminates abruptly with a failed assert com-
mand.

wp.(assert b).(Q,R) = (b &&Q) ‖ (! b &&R)

wp.(assume b).(Q,R) = b→ Q

wp.(x := e).(Q,R) = Q[x 7→ e]

wp.(C1;C2).(Q,R) = wp.C1.(wp.C2.(Q,R), R)

wp.(C1 8 C2).(Q,R) = wp.C1.(Q,R) && wp.C2.(Q,R)

Exceptional termination can also be considered in this framework, which in-
spires our treatment of exceptions for the While language in Section 10.1.

The weakest preconditions calculus has also been studied extensively and ap-
plied in many textbooks [29, 55, 42] as a tool for the development of correct-by-
construction software – quite a different perspective from program verification.

9 Hoare Logic with Updates

34

In Section 6 it was shown that the intermediate assertions required by the
sequencing rule of Hoare logic could be calculated either backwards from post-
conditions or in a forward fashion starting from the preconditions. In order
to define an inference system that propagates assertions in a forward manner,
it is convenient to modify the abstract syntax of programs to the following
linear version, in which programs are defined as (possibly empty) sequences
of commands. We let PROG denote the class of programs.

PROG 3 W ::= C ; W | ε

ICOMM 3 C ::= skip | x := e | if b then W else W | while b do {A}W

This corresponds simply to a left-associative view of the sequence operator.
We define a translation function T : IComm→ PROG as follows

T (skip) = skip ; ε

T (x := e) = x := e ; ε

T (C1 ; C2) = T (C1)@T (C2)

T (if b then Ct else Cf) = if b then T (Ct) else T (Cf) ; ε

T (while b do {I}C) = while b do {I} T (C) ; ε

where ·@· denotes sequence concatenation.

A natural semantics for programs and commands can be given via a mutually
dependent definition of the evaluation relation, similar to what is done in
Figure 2 (with the obvious adaptations).

The formulation of specifications that will be defined for these programs uses
a notion of update. An update is simply a partial mapping from variables
to expressions of the language. We write {x1 7→ e1, . . . , xn 7→ en} for the
update mapping xi to ei, for i ∈ {1, . . . , n}, and ∅ for the empty update.
Let U = {x1 7→ e1, . . . , xn 7→ en} be an update, and t an expression (resp.
assertion). We write U(t) to denote the expression (resp. assertion) obtained by
the simultaneous substitution of terms ei for the free occurrences of variables
xi in t.

Updates are modified by an operation that sets the value of a variable, defined
as

(U ;x := e) = U ⊕ {x 7→ U(e)}
where ⊕ denotes function overriding. For two partial functions f, g : X ↪→ Y
we define f ⊕ g : X ↪→ Y as follows

(f ⊕ g) (x) =

 g(x) if x ∈ dom(g)

f(x) if x 6∈ dom(g) ∧ x ∈ dom(f)

35

The notion of specification will now be slightly modified to correspond to
a Hoare triple extended with an update, written {P}[U]W {Q}. The idea
is that the update is applied to the initial state, in which the precondition
holds, before the program is executed. The semantic interpretation of such a
specification is

[[{P}[U]W {Q}]] = ∀s, s′ ∈ Σ. [[P]](s) ∧ (W, sU) ⇓ s′ ⇒ [[Q]](s′)

where the updated state sU is defined as follows:

sU (x) =

 s(x) if x 6∈ dom(U)

[[U(x)]](s) if x ∈ dom(U)

Before introducing the inference system we proceed with some lemmas involv-
ing the concepts described.

Lemma 17 For all C ∈ IComm, (T (C), s) ⇓ s′ iff (C, s) ⇓ s′

Proof. By induction on the structure of C. 2

Proposition 18 For C ∈ IComm, [[{P}[∅] T (C) {Q}]] = [[{P}C {Q}]]

Proof. Immediate by Lemma 17. 2

Lemma 19
(W1@W2, s) ⇓ s′ iff (W1, s) ⇓ s′′ and (W2, s

′′) ⇓ s′, for some s′′ ∈ Σ

Proof. By induction on the length of W1. 2

Lemma 20 [[U(Q)]](s) = [[Q]](sU)

Proof. By induction on the structure of Q. 2

Lemma 21 (1) s(U ; x:=e) = (sU)x:=e

(2) (W, s(U ; x:=e)) ⇓ s′ iff (x := e ; W, sU) ⇓ s′

Proof. Directly by unfolding the definitions. 2

The inference system of Hoare logic with updates is given in Figure 15. We
name it system Hu. There is one rule for each program construct, except for

36

if |= P → U(Q)

{P}[U] ε {Q}

{P}[U] W {Q}

{P}[U] skip ; W {Q}

{P}[U ; x := e] W {Q}

{P}[U] x := e ; W {Q}

{I && b}[∅] Wt {I} {I && ! b}[∅] W {Q}
if |= P → U(I)

{P}[U] while b do {I}Wt ; W {Q}

{P &&U(b)}[U] Wt@W {Q} {P && !U(b)}[U] Wf @W {Q}

{P}[U] if b then Wt else Wf ; W {Q}

Fig. 15. Rules of Hoare logic with updates – System Hu

sequencing, since all programs are now seen as sequences. The rule for the
empty program (called the exit rule) introduces a verification condition; the
remaining rules are selected by pattern-matching on the first command of the
program. So, the construction of derivation trees is syntax-directed.

Proposition 22 (Soundness) Every specification derivable in system Hu is
semantically valid: If `Hu {P}[U]W {Q}, then [[{P}[U]W {Q}]] = true.

Proof. By induction on the derivation of `Hu {P}[U]W {Q}. 2

So, it follows directly from propositions 18 and 22 that to prove the validity
of the triple {P}C {Q} it is enough to show that `Hu {P}[∅] T (C) {Q}.

Applying the rules of system Hu backwards to construct a proof tree is in fact
very close to performing a symbolic execution of the program, since at each
step of the proof, corresponding to a program C ; W , the proof construction
will proceed with the execution of the program W .

For this reason it has been argued that tools based on such a system with
updates may be more adequate for debugging purposes, since the construction
of proofs follows the symbolic execution of the code.

Figure 16 contains the definition of a VCGen obtained from system Hu. We
remark that whereas in the case of system Hgi producing a VCGen required
imposing a specific strategy for the construction of proof trees, in system Hu
the construction of derivations is deterministic. It is immediate to see that the
verification conditions produced by this algorithm, for a given Hoare triple
with updates, are exactly the side conditions of its derivation tree.

37

VCGu({P}[U] ε {Q}) = {[P → U(Q)]}

VCGu({P}[U] skip ; W {Q}) = VCGu({P}[U] W {Q})

VCGu({P}[U] x := e ; W {Q}) = VCGu({P}[U ; x := e] W {Q})

VCGu({P}[U] while b do {I}Wt ; W {Q}) = {[P → U(I)]} ∪ VCGu({I && b}[∅] Wt {I}) ∪

VCGu({I && ! b}[∅] W {Q})

VCGu({P}[U] if b then Wt else Wf ; W {Q}) = VCGu({P && U(b)}[U] Wt@W {Q}) ∪

VCGu({P && !U(b)}[U] Wf @W {Q})

Fig. 16. A VCGen based on updates: VCGu

VCGu({P}[∅] CI
Fib ; ε {Q})

= VCGu({P}[{x 7→ 1, y 7→ 0, i 7→ 1}] while i < n do {I}C′′ ; ε {Q})

= {[P → {x 7→ 1, y 7→ 0, i 7→ 1}(I)]} ∪ VCGu({I && i < n}[∅] C′′ {I}) ∪ VCGu({I && ! (i < n)}[∅] ε {Q})

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)]} ∪ {[I && ! (i < n)→ ∅(Q)]} ∪

VCGu({I && i < n}[∅] aux := y ; y := x ; x := x + aux ; i := i + 1 ; ε {I})

= {[n > 0→ 1 ≤ n && 1 == Fib(1) && 0 == Fib(1− 1)],

[i ≤ n && x == Fib(i) && y == Fib(i− 1) && ! (i < n)→ Q],

[i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n→

i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1)]}

since,
VCGu({I && i < n}[∅] aux := y ; y := x ; x := x + aux ; i := i + 1 ; ε {I})

= VCGu({I && i < n}[∅ ; aux := y] y := x ; x := x + aux ; i := i + 1 ; ε {I})

= VCGu({I && i < n}[{aux 7→ y} ; y := x] x := x + aux ; i := i + 1 ; ε {I})

= VCGu({I && i < n}[{aux 7→ y, y 7→ x} ; x := x + aux] i := i + 1 ; ε {I})

= VCGu({I && i < n}[{aux 7→ y, y 7→ x, x 7→ x + y} ; i := i + 1] ε {I})

= {[I && i < n→ {aux 7→ y, y 7→ x, x 7→ x + y, i 7→ i + 1}(I)]}

= {[i ≤ n && x == Fib(i) && y == Fib(i− 1) && i < n→

i + 1 ≤ n && x + y == Fib(i + 1) && x == Fib((i + 1)− 1)]}

Fig. 17. Fibonacci example, using VCGu

Lemma 23 VCGu({P}[U]W {Q})
Hu {P}[U]W {Q}

Proof. By induction on the structure of W . 2

Example 24 We exemplify the use of this VCGen with our running example
of Figure 11. Let P be n > 0, Q be x == Fib(n), and I be i ≤ n &&x ==
Fib(i) && y == Fib(i − 1). We start with the empty update. The set of
generated verification conditions is shown in Figure 17.

38

Hoare logic with updates was introduced in [43] with the accompanying proof
tool KeY-Hoare. The tool reads in a specification and try to prove it by con-
structing a proof tree (no explicit VCGen is used). The tool also includes a
first-order theory.

KeY-Hoare is in fact a side-product of a much bigger effort. The full-fledged
KeY tool [1] is a verification tool for Java Card programs (compatible with
JML annotations) capable of handling many aspects of real-world object-
oriented programs. KeY is based on JavaCardDL [10], a version of dynamic
logic [44] suited for this language. KeY also includes a symbolic debugger
module.

Updates are a key ingredient of JavaCardDL; the other main ingredient, which
stands at the heart of dynamic logic, is the existence of modalities in the
assertion language; in particular, for each program W in the programming
language and assertion Q, there exists a new assertion [W]Q, interpreted
informally as “if execution of W terminates, then Q will hold in the final
state”.

Formulas of JavaCardDL are of the form ([W]Q)U . This formula is interpreted
as true in a state s if Q holds in the state that results from executing W in
the state sU , if execution terminates.

The Hoare triple {P}C {Q} can be written as the formula P → [C]Q, and it
is not difficult to see that system Hu can be rewritten in the syntax of dynamic
logic. Note however that, since assertions of dynamic logic may contain pro-
grams, it may not be possible to interpret an arbitrary formula like P → [C]Q
directly as a Hoare triple.

10 Language Extensions

In this section we discuss several extensions to the initial language. Our aim
here is to provide some insight into how each of these aspects is treated by
common program verification tools for real-world languages. A brief review of
these tools is then given in the final section of the paper.

10.1 Exceptions

Adding exceptions to our language is useful not only because an exception
mechanism is useful in itself, but also because it provides a means to model
control-transfer commands (like break in C and Java).

39

We extend the syntax with two new commands, and a new form of specifica-
tions for exceptional termination.

IComm 3 C ::= . . . | tryC catchC | throw

Spec ∈ S ::= {A}C {A} | {A}C {|A|}

The throw command raises an exception (execution terminates abruptly).
The command tryC catchCc executes C and catches a possible exception
raised by it, in which case the code Cc is executed.

The informal meaning of a specification {P}C {|Q|} is that if the program
C is executed in an initial state in which the precondition P is true, then
either execution of C does not terminate or it terminates with an exception
raised, in which case the postcondition Q is true in the final state. If the
triple {P}C {Q} is valid and C terminates, then it does so normally, with no
exception raised.

The behaviour of throw and tryC catchCc can be described axiomatically
by rules like the following, where in the latter case one rule is given for normal
termination of C and another for exceptional termination.

if |= P → Q

{P} throw {|Q|}

{P}C {Q}

{P} try C catchCc {Q}

{P}C {|S|} {S}Cc {Q}

{P} try C catchCc {Q}

{P}C {|S|} {S}Cc {|R|}

{P} try C catchCc {|R|}

We remark that simply adding these rules to the system Hgi would not work:
one would also have to add new rules, similar to those of Hgi, to account for
exceptional termination. This presentation is a bit tedious.

A more compact alternative is to use a special notation for specifications
with two possible outcomes. The specification {P}C {Q}{|R|} is valid if either
{P}C {Q} is valid or {P}C {|R|} is valid. With this notion of specification it is
possible to write a goal-directed Hoare logic system for the extended language
by simply adding an exceptional postcondition {|R|} to all the Hoare triples
in the rules of system Hgi, and extending it with the following rules

if |= P → R

{P} throw {Q}{|R|}

{P}C {Q}{|S|} {S}Cc {Q}{|R|}

{P} try C catchCc {Q}{|R|}

The definitions of wprec and VCG (figures 9 and 13) can be easily adapted
for this extended language; it suffices to modify the signatures of functions
to take two postconditions as arguments, including a second postcondition R

40

in every invocation wprec (·, ·, R) and VCaux (·, ·, R). The following additional
clauses are required.

wprec (throw, Q,R) = R

wprec (tryC catchCc, Q,R) = wprec (C,Q,wprec (Cc, Q,R))

VCaux (throw, Q,R) = ∅

VCaux (tryC catchCc, Q,R) = VCaux (C,Q,wprec (Cc, Q,R)) ∪ VCaux (Cc, Q,R)

And finally

VCG({P}C {Q}{|R|}) = {[P → wprec (C,Q,R)]} ∪ VCaux (C,Q,R)

This treatment of exceptions is similar to that proposed in the work of Leino
and colleagues on weakest preconditions of guarded command languages [65].

10.2 Arrays and Pointers: Aliasing

Aliasing is a phenomenon that occurs in programming languages when some
form of indirection is possible.

Arrays provide one such example: if we introduce arrays of integers in our
language (with notation u[k] for the value stored in position k of array u),
then of course indexing by arbitrary expressions must be allowed – restricting
indexes to constants makes arrays useless collections of variables, since it is not
possible to iterate over them. This creates an opportunity for aliasing to occur.
In particular, the expressions u[e] and u[e′] may refer to the same positions
in the array or not, depending on whether e = e′ holds. This is usually called
subscript aliasing.

Simply viewing arrays as indexed variables will not work. Consider the fol-
lowing adaptation of the weakest precondition calculation for an assignment
instruction.

wprec(u[i] := e,Q) = Q[u[i] 7→ e]

This would yield for instance

wprec(u[i] := 10, u[j] > 100) = u[j] > 100

but clearly the precondition u[j] > 100 will not be preserved by the command,
if executed in a state in which i = j.

41

The correct output would be a logical condition that incorporates all the re-
quired comparisons between all index expressions present in the postcondition
and the array position assigned to. For the above example one would have

wprec(u[i] := 10, u[j] > 100) = (i == j → 10 > 100) && (i != j → u[j] > 100)

It is relatively simple to devise an algorithm to produce this verification con-
dition.

Hoare’s solution to this problem was slightly different: arrays were seen as
monolithic objects, equipped with an array update operation. Let write(u, i, e)
denote the array that results from updating u by setting the contents of posi-
tion i to e; then the weakest precondition can be calculated correctly as

wprec(u[i] := e,Q) = Q[u 7→ write(u, i, e)]

This approach involves reasoning in the context of what is usually described
as a theory of arrays, which specifies the behaviour of the update operation.
The two most fundamental axioms are

Forallu, i, j, e. i == j → write(u, i, e)[j] == e (1)

Forallu, i, j, e. i 6= j → write(u, i, e)[j] == u[j] (2)

Proof tools aimed at program verification, in particular SMT solvers, typically
allow reasoning with such an array theory.

The logic with updates studied in Section 9 copes very easily with aliasing:
it suffices to adapt to array positions or structure fields the definition of the
operation that sets the value of a variable. For instance, for array positions
one could write

(U ; a[j] := e) = U ⊕ {a[j] 7→ U(e)}

A different form of aliasing occurs in a language with structures (or objects).
Let s.a denote the value stored in the field a of structure s; then p.a and q.a
may refer to the same value or not, depending on whether p and q refer to
the same structure. Note that this only makes sense if p and q are references
(or pointers) to structures, since it is not possible for two ordinary variables
to have as values the same structure. For this reason this form of aliasing is
known as pointer aliasing.

Dealing with pointer aliasing is crucial if one wants to be able to verify pro-
grams that use recursive data structures, dynamically defined in heap memory.
A heap can be seen as a very big array (indexed by memory positions), and in
this sense pointer aliasing is an instance of index aliasing. Seriously reasoning
about pointer programs requires a new framework that avoids the proliferation
of arithmetic proof obligations concerning indexes. The theoretical advances

42

in this area have been developed in the context of separation logic [73, 77],
whose key idea is the possibility to explicitly express the separation between
different structures.

An alternative to this approach had previously been proposed by Burstall [16]
and further explored by Bornat [14]. The idea here was to see the heap as a
collection of arrays, rather than a single array. In particular, there should be
one such array for every structure/object field. For instance, p.a and q.a could
be represented by positions a[p] and a[q] in the same (heap model) array a.
They will be represented by the same position if p and q are the same memory
address. The operation of setting the value of field a of the structure referred
by p to e is modelled by write(a, p, e).

This approach has the advantage of producing first-order verification condi-
tions, which means that (unlike separation logic) it can be handled by a stan-
dard prover in a straightforward fashion, requiring simply a theory of arrays.
The Caduceus VCGen uses this approach to construct a memory model for C
programs. The heap model is explicitly constructed as a set of data structures
in the language of the Why generic VCGen (see Section 11 below).

10.3 Procedure Calls

The inclusion of procedures in the programming language raises a number of
issues that will now be briefly discussed. For the sake of simplicity we restrict
our attention to parameterless procedures.

Let the code Cp be the body of procedure p; the command call p invokes
this procedure and transfers control to Cp. After execution of Cp, control
will return to the point immediately after call p in the caller. The following
straightforward rule states that reasoning about call p should be transferred
to reasoning about Cp.

{P}Cp {Q}

{P} call p {Q}

The first difficulty is that if Cp contains a call to p this will generate infinite
derivations. From the point of view of verification conditions we could define
the weakest precondition wprec(call p, Q) = wprec(Cp, Q), but expanding this
would of course lead to a recursive equation wprec(call p, Q) = P ′ where P ′

contains occurrences of wprec(call p, Q′) for some assertions Q′.

Hoare [46] proposed the following rule to reason about procedure calls in the

43

presence of recursion:
[{P} call p {Q}]

·
·
·

{P}Cp {Q}

{P} call p {Q}

The rule makes use of the notion of hypothetical derivation, as in the in-
ference systems for natural deduction. If reasoning under the assumption
{P} call p {Q}, one is able to prove that {P}Cp {Q} holds, this amounts
in fact to proving the assumption itself, which can be cancelled in the deriva-
tion. Intuitively, if assuming the correctness of p wrt. (P,Q), one is able to
prove that same correctness, then p is indeed correct wrt. (P,Q).

A second difficulty now arises: this rule is not appropriate to extend system
Hgi. Observe that while reasoning about Cp one will have to use as hypothesis
the triple {P} call p {Q}, and system Hgi does not provide a consequence rule
to adapt P and Q as required by the structure of Cp. Additionally, it is also
not clear how verification conditions can be generated following this rule.

Similarly to reasoning about loops, this difficulty can be addressed by intro-
ducing additional annotations in the code. These annotations will consist of
a precondition and a postcondition for each procedure, usually known as the
procedure’s contract. In the following, whenever we say that a procedure is
correct, it is meant that it is correct with respect to its contract.

Let then precondition Pp and postcondition Qp be the contract or public
specification of p, and consider for a moment that no auxiliary variables are
allowed to occur in Pp and Qp. The following two rules can be added to system
Hgi for reasoning about procedures.

(contract)

[{Pp} call p {Qp}]
·
·
·

{Pp}Cp {Qp}

{Pp} call p {Qp}

(adapt)

{Pp} call p {Qp}
if |= P → Pp and |= Qp → Q

{P} call p {Q}

The first rule is used to establish the correctness of the procedure with respect
to its contract only, not with respect to other specifications. The second rule
is a dedicated version of the consequence rule, usually known as an adapta-
tion rule, which can only be used to prove that p meets any specification
that is weaker than its contract. Crucially, unlike a general consequence rule,
this rule enjoys the subformula property, since Pp and Qp are obtained from
p. The adaptation rule can be used notably in the derivation of the triple

44

{Pp} call p {Qp} using the (contract) rule, to adapt the assumption triple to
the precondition and postcondition that may be locally required.

Before considering how verification conditions can be generated based on this
rule, consider now that we have a set of procedures that invoke each other
freely in a mutually recursive way; a program can be seen as a set of such
mutually recursive procedures (a similar context is that of a class in an object
oriented programming language, consisting of a set of methods that share a
number of class attributes, playing the role of global variables). To formalise
this setting, we assume a set of procedure names P and let p range over P . Let
Proc denote the class of procedure definitions (the body of a procedure defi-
nition is just a specification). We extend the command syntax with procedure
calls, and let programs be defined as sequences of procedure definitions.

IComm 3 C ::= . . . | call p

Proc 3 Φ ::= proc p = {A}C {A}

Prog 3 Π ::= Φ Π | Φ

The procedure definition proc p = {Pp}Cp {Qp} sets the public specification
of p to consist of precondition Pp and postcondition Qp, and the body of p to
be Cp. We say that a program Π is well-defined if the names of its procedures
are unique, and no procedure in Π invokes procedures which are not in Π.
One particular procedure should be designated as an entry point into each
program, but we will abstract away from this operational issue.

The word ‘contract’ is used in the sense that the specification of each proce-
dure establishes an agreement between a calling procedure and the invoked
procedure: if p1 calls p2 then p1 should ensure that the precondition of p2 is
satisfied immediately before the call; the specification of p2 guarantees that its
postcondition will be satisfied when control is returned to p1. This principle is
thoroughly explored in the so-called design-by-contract approach to software
development [69].

How should the (contract) rule be modified to cope with multiple procedures
and mutual recursion? The rationale must now be “if assuming the correctness
of all procedures in a program, one is able to prove individually the correctness
of every procedure in it, then all procedures are correct”. It is not possible
in general to assert individually the correctness of a single procedure with an
empty set of assumptions. Let Π be a program and pi range over its procedures,

45

with i ∈ {1, . . . , n}. The rules now become:

(contract)

[Π is correct]
·
·
·

{Pp1}Cp1 {Qp1} · · ·

[Π is correct]
·
·
·

{Ppn}Cpn {Qpn}

Π is correct

(adapt)

Π is correct

if |= P → Ppi and |= Qpi → Q

{P} call pi {Q}

From the point of view of verification conditions, the validity of those concern-
ing a particular procedure p is not sufficient to ensure the correctness of p,
since this relies on the correctness of the procedures invoked by p. Instead, the
verification conditions of a multi-procedure program should be considered as
a whole, that is, as the union of the sets of VCs generated for each individual
procedure, guaranteeing that each procedure keeps to its part of the contract,
when invoked.

VCG(Π) =
⋃

i∈{1,...,n}
VCG({Ppi

}Cpi
{Qpi

})

The following clauses complement accordingly the definition of the auxiliary
functions of VCG:

wprec(call pi, Q) = Ppi

VCaux(call pi, Q) = {[Qpi
→ Q]}

Homeier and Martin’s mechanically verified VCGen has been extended to
a language with recursive procedures (with parameters) following a similar
approach [48].

We end the section with some remarks on further aspects related to procedures.

Auxiliary Variables and Adaptation Rules. In the rules and verifica-
tion conditions considered above for procedure calls, we admitted that con-
tracts contained no occurrences of auxiliary variables. But this is a big limi-
tation, since it precludes any kind of specification that relates the post-state
and the pre-state, i.e. the outputs and inputs of procedures.

Consider again our (adapt) rule. If Qpi
contains auxiliary variables, the side

condition Qpi
→ Q may be invalid for lack of information. Suppose Pp is

x == x0 and Qp is x == x0 + 10, P is x > 0 and Q is x > 10. Intuitively
the triple {P} call p {Q} is valid, but clearly 6|= x == x0 + 10 → x > 10.

46

The problem is that it is not possible to prove this implication between the
contract’s postcondition and the actual required postcondition, without taking
into account information from P and Pp: the two verification conditions should
be replaced by a single one, combining two assertions that are interpreted in
different states (the pre-state and the post-state of the procedure call), thus
allowing information to be transported from one state to another. One way
to solve this is via a syntactic encoding of one of the states, using variable
substitutions and quantification. The following rule is adapted from [59].

Π is correct

if P → Forall ~xf . (Forall ~yf . Pp[~y 7→ ~yf]→ Qp[~y 7→ ~yf , ~x 7→ ~xf])→ Q[~x 7→ ~xf]

{P} call pi {P}

where ~y are the auxiliary variables occurring in {Pp}Cp {Qp}, ~x are the pro-
gram variables of p, and ~xf and ~yf are fresh variables.

The interaction between auxiliary variables and recursive procedures has long
been a topic of investigation. Some of the first proposed solutions involved
the use of modified structural rules. Rather than covering here in detail the
theoretical issues involved (in particular how the properties of Hoare logic are
affected by the introduction of an adaptation rule) and the solutions proposed
over the years, we direct the reader to the surveys [2] and [21].

Kleymann [59] also offers a more recent study of the topic, where it is stressed
that (i) the fundamental difficulty is the fact that auxiliary variables are not
given a special status in Hoare logic; and (ii) the problem of adaptation is
not specific of recursive procedures, and already manifests itself whenever one
tries to apply the consequence rule of Hoare logic with a hypothesis contain-
ing auxiliary variables. Von Oheimb [82] explicitly addresses the treatment of
mutual recursion in the presence of auxiliary variables.

Procedures with Parameters. We will not consider in detail the case of
procedures with parameters; in the following we simply mention some of the
issues that must be taken into account when generating verification conditions
regarding the invocation of such procedures. Consider the following procedure
definition, where x is the only formal parameter of p, of type int.

proc p(x) = {Pp}Cp {Qp}

One novelty is that the variable x is local to the procedure (one could also
have variables that are local to a block of code, but in this paper we have
not considered this possibility). It must be possible for x to be used in the
annotations, in particular in Pp or Qp, but also in invariants occurring inside
Cp, allowing them to refer to the value of the parameter.

Parameters have the effect of hiding global variables of the same name (both

47

in the code and in annotations), but this is not a big issue since they can
be freely renamed. Renaming is essential when reasoning about procedures
with parameters; it suffices to understand that when some other procedure q
executes the call call p(e), the expression e may contain occurrences of, say, a
local variable y of q that happens also to be a global variable occurring in Pp.
A verification condition will be generated containing occurrences of the same
variable that have as origin different program variables.

Another issue that must be taken into account is that parameters passed by
value should the treated differently from parameters passed by reference. In
particular, occurrences of a parameter x passed by value in Qp, the procedure’s
postcondition, are usually interpreted as referring to the value of x in the pre-
state in which the procedure was invoked, even if the programming language
allows assigning locally the value of such parameters. If x is passed by reference
on the other hand, occurrences of x in Qp should be interpreted in the post-
state, and an auxiliary variable (or an operator like old discussed before) should
be used if it is necessary to refer to its value in the pre-state.

The most difficult issue created by the presence of parameters passed by ref-
erence is yet another manifestation of aliasing. If a procedure p has two pa-
rameters x and y passed by reference, the invocation p(z, z), with z a global
variable, creates aliasing since occurrences of both x and y in p will refer to z,
thus an assignment to x will modify also the value of y. In fact it is not even
required that p has two such parameters, since the global variable z may be
used directly in the body of p. This form of aliasing is known as parameter
aliasing. In the C programming language parameters are passed by reference
through pointers, thus parameter aliasing is reduced to pointer aliasing. Even
when this is not the case, the techniques employed to reason about pointer
aliasing can in general also be used for parameter aliasing.

Frame Properties. In languages like C or Java, evaluation of expressions
may have side effects that modify the state of the program; x++ is a typical
example of such an expression. This issue has been addressed in most attempts
to construct Hoare logics for realistic languages, see Section 11.

A procedure call is also an example of an expression with side effects. A
command like call p alters the state of the program since execution of the
body of p is free to access global variables (or class and instance variables,
in the case of object-oriented programs). To allow for modular reasoning,
the procedure’s contract can include information describing the unchanged
part of the state, using a technique similar to that described at the end of
Section 7. However, it is easy to see that this approach is inadequate. For
instance, if new variables are introduced in the state, the specifications of
many different procedures may have to be changed. This is usually known as

48

the frame problem [13], and it applies to all forms of subroutines, including
procedures, functions, and object methods – it is in fact particularly important
in object-oriented languages.

In general terms, it is more useful to include in contracts a description of
what part of the state the subroutines are allowed to affect, rather than what
part must remain unchanged. This is usually known as the subroutine’s frame
condition. For instance in JML there are two frame annotations that may be
included in specifications: assignable annotations, which list the variables
that may be assigned by a method, and modifies annotations, which list
variables whose value is allowed to be modified. Thus a variable that may be
assigned inside a method, but whose value upon exit must be guaranteed to
be restored to its entry value can be listed as assignable but not as modifiable.

Frame conditions are part of a method’s contract: typically they give rise to
proof obligations when the method is being verified, and generate hypotheses
that may be used when reasoning about calls to that method. In JML, methods
that do not affect the state at all are called pure. A method annotated as pure
can be used for specification purposes and called inside annotations.

11 Conclusion

We finish the paper with a brief survey of work that has contributed to bringing
the benefits of deductive verification into practice.

Theorem Proving. As already mentioned, one reason for the reemergence
of program verification is the tremendous progress that automated theorem
provers have experienced in the last decade. Notably a new class of provers
has appeared, called Satisfiability Modulo Theories (SMT) solvers [25, 26].

SMT solvers have theirs origins in Boolean satisfiability (SAT) solvers [67, 34].
While SAT solvers check efficiently the satisfiability of propositional formulas,
SMT solvers check the satisfiability of first-order formulas containing opera-
tions from various theories such as the Booleans, bit-vectors, arithmetic, ar-
rays, and recursive data types. More precisely, SMT solvers address the issue
of satisfiability of quantifier-free first-order formulas (in conjunctive normal
form), using as building blocks (i) a propositional SAT solver, and (ii) state-
of-the-art theory solvers to study the satisfiability of sets of first-order literals.

SMT solvers have been traditionally used to support deductive software ver-
ification, and play an important role in modern verification architectures for
programs annotated with contracts. They have also been applied with success

49

in several domains in computer science, such as model checking and automated
test generation.

SMT solvers are the subject of very active research, and substantial techni-
cal advances have been taking place, propelled by the SMT-LIB initiative 3

and the associated SMT-COMP 4 competition, which provide a common in-
put format and benchmarking framework for the evaluation of these systems.
Popular solvers include Yices [31], CVC3 [7], Z3 [24], and Alt-Ergo [18].

In the absence of decidability results (recall that first-order logic is only semi-
decidable) the importance of the user-guided deductive method cannot be
overstated. Automated methods may never replace human genius in every
situation, and some proofs appeal to the creativity of the user. Interactive
proof assistants are tools aimed precisely at assisting users in the construction
of derivations in a given proof system. Typically they can deal with very
expressive logics, such as higer-order logic, and basically follow one of two
approaches: an axiomatic approach, where the users are given the possibility
to define the logic in which they desire to express proofs, and of which the
Isabelle system [72] is a representative; or an integrated approach, where the
basic language is sufficiently expressive to formulate most of mathematics, and
of which the Coq system [12] is a representative.

Finally, we cite [79] as a recent survey on automated deduction for verification.

Automatic Generation of Invariants. The automated inference of in-
variants has been an active field of research since the 1970’s. The first tech-
niques proposed for inference of invariants were based on static methods, in
particular abstract interpretation and a constraint-based approach [39, 57,
56, 80, 22, 20, 27]. More recent techniques also employ dynamic methods [33].
Loop invariants captured by these techniques can be extremely useful, but are
typically insufficient to prove full functional correctness of programs, which
usually requires human creativity.

Static techniques for invariant inference are used in modern static checkers
such as Boogie, ESC and Why, see below.

Realistic Programming Languages. The gap between the point where
this paper stops, and program verification for real-world languages begins, has
been the object of significant work in recent years.

3 http://www.smtlib.org/
4 http://www.smtcomp.org/

50

One first aspect is that much of the recent work on program verification has
been developed by a community federated around the Java Modelling Lan-
guage (JML) [62, 60]. This is an annotation language for Java programs with
support for preconditions, postconditions, frame conditions, and loop invari-
ants, all written using the same syntax for expressions as the source language
(exclusive of side-effects). JML also includes special keywords \old, with the
interpretation explained in Section 7, and \result, which stands for the return
value of a method.

The language incorporates many other modelling aspects that are useful to
reason about object-oriented programs, such as class invariants (properties
on the values of instance and class variables that must be preserved by all
methods) and specification-only (or model) fields and methods, which allow
for reasoning about hidden (or not yet implemented) specifications. It also
includes a rich library of types with accompanying mathematical theories,
including sets and sequences.

JML was not developed exclusively with program verification or other static
checking methods in mind. In fact, the design-by-contract approach to software
development is supported by a number of different tools for different tasks.
These include dynamic assertion checkers, unit test class generators, and even
generators that can be used to help write specifications. A number of program
verification systems discussed below also use JML as specification language.

Admittedly, the material in Section 10 barely starts to cover the complex
language constructs and memory models found in programming languages
like C, Java or C#. For the particular case of object-oriented languages, there
are many specific aspects that we have not covered at all. Poetzsch-Heffter
and Müller [75] summarise as follows the difficulties involved in designing
Hoare-style logics for these languages.

Three aspects make verification of OO-programs more complex than verifi-
cation of programs with just recursive procedures and arbitrary pointer data
structures: subtyping, abstract types, and dynamic binding. Subtyping allows
variables to hold objects of different types. Abstract types have different or
incomplete implementations. Thus, techniques are needed to formulate type
properties without referring to implementations. Dynamic binding destroys
the static connection between the calls and the body of a procedure.

A discussion of how these issues are addressed is beyond the scope of this pa-
per; in the following we will concentrate instead on the organisational aspects.
Accounts of the state of the art and current challenges in the field of object-
oriented program verification (and specification languages) have been given
by Jacobs, Kiniry and Warnier [51] and more recently by Leavens, Leino, and
Müller [61].

51

The work on verification conditions for realistic languages falls roughly into
two categories. Some researchers have proposed logics that attempt to fully
describe the axiomatic semantics of the programming language; this is the
case for instance of the following, which have been used to produce working
program verification systems.

• Poetzsch-Heffter and Müller’s logic for sequential Java [75], used in the
Jive [70] verification platform to generate verification conditions exported to
the PVS [74] theorem prover. Following Gordon and Homeier and Martin,
both the operational semantics of the language and the proposed Hoare
inference system have been encoded in higher-order logic, and the latter
proved sound with respect to the former.
• In the context of the Loop project, a Hoare logic for JML has been devel-

oped [52]. The approach followed in Loop is quite different from what has
been discussed in this paper: a compiler first produces a logical theory (in
the language of the PVS theorem prover) that describes the behaviour of a
given JML-annotated Java program; program correctness is then proved in
this theory. However, a weakest-precondition function can also be integrated
in the tool [50], with the aim of reducing the required user interaction. This
function is defined inside the logic, and works on translated programs.
• The KeY project’s JavaCardDL [10] is used in an integrated tool that sup-

ports the development of JML-annotated Java Card programs. JavaCardDL
has not to our knowledge been mechanically proved correct with respect
to a non-axiomatic semantics. This system uses a special-purpose theorem
prover to construct proofs of JavaCardDL.

The architectures of the latter two systems do not use a separate VCGen
component, and do not export proof obligations free of program constructs.

Von Oheimb’s Hoare logic for a subset of Java Card [83], although not used
(to our knowledge) to produce a working tool, was an important development
since it was mechanically proved sound and complete with respect to the
operational semantics, using the Isabelle/HOL interactive theorem prover.

A second approach has concentrated on developing practical tools for program
verification. The focus here has not been so much on correctness – these tools
do not promise to find all errors a program may contain – but on usabil-
ity, integration into the software development process, and compatibility with
different proof tools.

We mention here two VCGen tools that are based on relatively small and sim-
ple intermediate languages, sufficiently expressive to support the translation
of realistic languages. The more complex aspects are handled by an adequate
translation into the intermediate language, rather than by the design of a com-
plex Hoare logic for the object language. A good example of this is the memory

52

model: the intermediate language will typically have a very simple model with
no heap, and the translation of the object language encodes the heap in some
way into that model, to ensure an adequate treatment of references/pointers
and aliasing.

The Boogie [5] program verifier was designed for the Spec# language (which
stands for C# as JML stands for Java) and incorporates many advanced fea-
tures, including integration with a development environment and automatic
inference of loop invariants. The BoogiePL intermediate language is a guarded
command language that features procedures and mutable variables, but ex-
cludes more complex features like methods, side-effects, or call-by-reference.
So the translation of the object language into this intermediate language is
responsible for encoding these features in a sound way.

The Why tool [36] was born from a very different perspective: the basic idea
is to provide an interpretation of programs in type theory, such that the proof
obligations for typability of the interpretation function coincide with the veri-
fication conditions. In this way, interpreting programs in type theory becomes
an alternative to using a standard VCGen. The Why intermediate language
is ML-like, including both functional and imperative features, exceptions, and
labelling of statements (to make the use of auxiliary variables unnecessary).
The type system accounts for effects, i.e. the type of an expression is anno-
tated with, for instance, the set of variables that are possibly modified by its
evaluation, which makes possible to eliminate aliasing. Why supports a variety
of theorem provers, and has been used to produce program verification tools
for both C (Caduceus [35], Frama-C [19]) and Java (Krakatoa [68]). Frama-C
is a plugin-based general purpose static analyser for C programs, which works
with the recently proposed ANSI-C Specification Language (ACSL) [9].

Finally, we remark that all the verification tools we have mentioned for realistic
programming languages implement a form of safety verification. What we
mean by this is that the tools generate some special verification conditions
that are not directly related to the contracts included in the code. These
conditions concern the safe execution of methods or procedures: by discharging
them, one proves, for instance, that arithmetic errors (like division by zero)
or inappropriate memory accesses do not take place. This is a comparatively
easy form of verification, and the degree of automation achieved is usually
high.

A treatment of safety at the theoretical level requires working with a semantics
that deals with error states, and interpreting partial correctness as implying
that a program does not terminate in an error state.

53

Acknowledgements

This work was supported by projects FAVAS (PTDC/EIA-CCO/105034/2008)
and CROSS (PTDC/EIA-CCO/108995/2008), both funded by Fundação para
a Ciência e Tecnologia (FCT).

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth,
Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and System
Modeling, 4(1):32–54, 2005.

[2] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey - part 1. ACM Trans.
Program. Lang. Syst., 3(4):431–483, 1981.

[3] A. Azurat and I.S.W.B. Prasetya. A survey on embedding programming logics
in a theorem prover. Technical report, University of Utrecht, 2002.

[4] Roland Backhouse. Program Construction – Calculating Implementations from
Specifications. John Wiley & Sons, Ltd, 2003.

[5] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-oriented
programs. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2005.

[6] Michael Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured
programs. SIGSOFT Softw. Eng. Notes, 31(1):82–87, 2006.

[7] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[8] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow
by self-composition. In CSFW, pages 100–114. IEEE Computer Society, 2004.

[9] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché,
Benjamin Monate, Yannick Moy, and Virgile Prevosto. ACSL: ANSI/ISO C
Specification Language. CEA LIST and INRIA, 2010.

[10] Bernhard Beckert. A dynamic logic for the formal verification of Java Card
programs. In Isabelle Attali and Thomas P. Jensen, editors, Java Card
Workshop, volume 2041 of Lecture Notes in Computer Science, pages 6–24.
Springer, 2000.

54

[11] Yves Bertot. Theorem proving support in programming language semantics.
CoRR, abs/0707.0926, 2007.

[12] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[13] Alexander Borgida, John Mylopoulos, and Raymond Reiter. On the frame
problem in procedure specifications. Software Engineering, 21(10):785–798,
1995.

[14] Richard Bornat. Proving pointer programs in Hoare logic. In Roland Carl
Backhouse and José Nuno Oliveira, editors, MPC, volume 1837 of Lecture Notes
in Computer Science, pages 102–126. Springer, 2000.

[15] R. S. Boyer and J. S. Moore. The Correctness Problem in Computer Science,
chapter A Verification Condition Generator for FORTRAN. Academic Press,
1981.

[16] Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 7, 1972.

[17] David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, CASSIS, volume 3362 of Lecture Notes in Computer Science,
pages 108–128. Springer, 2004.

[18] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo: a theorem
prover for polymorphic first-order logic modulo theories, 2006.

[19] Loc Correnson, Pascal Cuoq, Armand Puccetti, and Julien Signoles. Frama-C
user manual. Available from the Frama-C website, http://frama-c.com, 2010.

[20] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY.

[21] Patrick Cousot. Methods and logics for proving programs. In Handbook of
Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 841–994. Elsevier and MIT Press, 1990.

[22] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM Symposium on Principles of
Programming Languages, pages 238–252, January 1977.

[23] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach
to analysis of secure information flow. In Dieter Hutter and Markus Ullmann,
editors, SPC, volume 3450 of Lecture Notes in Computer Science, pages 193–
209. Springer, 2005.

55

[24] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver, volume
4963/2008 of Lecture Notes in Computer Science, pages 337–340. Springer
Berlin, April 2008.

[25] Leonardo de Moura and Nikolaj Bjrner. Satisfiability modulo theories: An
appetizer. In Marcel Vinicius Medeiros Oliveira and Jim Woodcock, editors,
SBMF, volume 5902 of Lecture Notes in Computer Science, pages 23–36.
Springer, 2009.

[26] Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A tutorial
on satisfiability modulo theories. In Proceedings of the 19th international
conference on Computer aided verification, CAV’07, pages 20–36, Berlin,
Heidelberg, 2007. Springer-Verlag.

[27] Nachum Dershowitz and Zohar Manna. Inference rules for program annotation.
In Proceedings of the 3rd international conference on Software engineering,
ICSE ’78, pages 158–167, Piscataway, NJ, USA, 1978. IEEE Press.

[28] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

[29] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

[30] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
27(7):1165–1178, July 2008.

[31] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical
report, SRI, 2006.

[32] Matthew B. Dwyer, John Hatcliff, Robby Robby, Corina S. Pasareanu, and
Willem Visser. Formal software analysis emerging trends in software model
checking. In 2007 Future of Software Engineering, FOSE ’07, pages 120–136,
Washington, DC, USA, 2007. IEEE Computer Society.

[33] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering, 27:99–123, 2001.

[34] Niklas En and Niklas Srensson. An extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in
Computer Science, pages 502–518. Springer, 2003.

[35] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C
programs. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors,
ICFEM, volume 3308 of Lecture Notes in Computer Science, pages 15–29.
Springer, 2004.

[36] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus
platform for deductive program verification. In Werner Damm and Holger

56

Hermanns, editors, Proceedings of CAV’07, volume 4590 of Lecture Notes in
Computer Science, pages 173–177. Springer, 2007.

[37] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. In POPL ’01: Proceedings of
the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 193–205, New York, NY, USA, 2001. ACM.

[38] Robert Floyd. Assigning meaning to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, number 19 in Proceedings of
Symposia in Applied Mathematics, pages 19–32. American Mathematical
Society, 1967.

[39] Steven M. German and Ben Wegbreit. A synthesizer of inductive assertions.
In Proceedings of the May 19-22, 1975, national computer conference and
exposition, AFIPS ’75, pages 369–376, New York, NY, USA, 1975. ACM.

[40] Donald I. Good. Mechanical proofs about computer programs. Technical
Report 41, The University of Texas at Austin, March 1984.

[41] Michael J. C. Gordon. Mechanizing programming logics in higher order logic.
In G. Birtwistle and P.A. Subrahmanyam, editors, Current trends in hardware
verification and automated theorem proving, pages 387–439. Springer-Verlag
New York, Inc., 1989.

[42] David Gries. The Science of Programming. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1987.

[43] Reiner Hähnle and Richard Bubel. A Hoare-style calculus with explicit state
updates. Department of Computer Science, Chalmers University of Technology.

[44] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of
Philosophical Logic Volume II — Extensions of Classical Logic, pages 497–604.
D. Reidel Publishing Company: Dordrecht, The Netherlands, 1984.

[45] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580, 1969.

[46] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In
Proceeedings of Symposium on Semantics of Algorithmic Languages, volume
188 of Lecture Notes in Mathematics. Springer Berlin / Heidelberg, 1971.

[47] Peter V. Homeier and David F. Martin. A mechanically verified verification
condition generator. Comput. J., 38(2):131–141, 1995.

[48] Peter V. Homeier and David F. Martin. Mechanical verification of mutually
recursive procedures. In Michael A. McRobbie and John K. Slaney, editors,
CADE, volume 1104 of Lecture Notes in Computer Science, pages 201–215.
Springer, 1996.

[49] Shigeru Igarashi, Ralph L. London, and David C. Luckham. Automatic program
verification I: A logical basis and its implementation. Acta Inf., 4:145–182, 1974.

57

[50] Bart Jacobs. Weakest pre-condition reasoning for Java programs with JML
annotations. J. Log. Algebr. Program., 58(1-2):61–88, 2004.

[51] Bart Jacobs, Joseph Kiniry, and Martijn Warnier. Java program verification
challenges. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 2852 of Lecture Notes in Computer
Science, pages 202–219. Springer, 2002.

[52] Bart Jacobs and Erik Poll. A logic for the Java modeling language JML. In
Heinrich Hußmann, editor, FASE, volume 2029 of Lecture Notes in Computer
Science, pages 284–299. Springer, 2001.

[53] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.
Surv., 41:21:1–21:54, October 2009.

[54] Cliff B. Jones. The early search for tractable ways of reasoning about programs.
IEEE Ann. Hist. Comput., 25(2):26–49, 2003.

[55] Anne Kaldewaij. Programming: the derivation of algorithms. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[56] M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

[57] Shmuel Katz and Zohar Manna. Logical analysis of programs. Commun. ACM,
19:188–206, April 1976.

[58] James Cornelius King. A program verifier. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1969.

[59] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Aspects of
Computing, 11(5):541–566, 1999.

[60] G. Leavens and Y. Cheon. Design by Contract with JML, 2003.

[61] Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and
verification challenges for sequential object-oriented programs. Form. Asp.
Comput., 19(2):159–189, 2007.

[62] Gary T. Leavens, Clyde Ruby, K. Rustan, M. Leino, Erik Poll, and Bart Jacobs.
JML: notations and tools supporting detailed design in Java. In OOPSLA
’00: Addendum to the 2000 proceedings of the conference on Object-oriented
programming, systems, languages, and applications (Addendum), pages 105–
106, New York, NY, USA, 2000. ACM.

[63] K. Rustan M. Leino. Extended static checking: A ten-year perspective. In
Informatics - 10 Years Back. 10 Years Ahead., pages 157–175, London, UK,
2001. Springer-Verlag.

[64] K. Rustan M. Leino. Efficient weakest preconditions. Inf. Process. Lett.,
93(6):281–288, 2005.

58

[65] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java
programs via guarded commands. In Ana M. D. Moreira and Serge Demeyer,
editors, Proceedings of ECOOP Workshops’99, volume 1743 of Lecture Notes in
Computer Science, pages 110–111. Springer, 1999.

[66] Jacques Loeckx and Kurt Sieber. The foundations of program verification (2nd
ed.). John Wiley & Sons, Inc., New York, NY, USA, 1987.

[67] Sharad Malik, Ying Zhao, Conor F. Madigan, Lintao Zhang, and Matthew W.
Moskewicz. Chaff: Engineering an efficient SAT solver. Design Automation
Conference, 0:530–535, 2001.

[68] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The
KRAKATOA tool for certification of JAVA/JAVACARD programs annotated
in JML. J. Log. Algebr. Program., 58(1-2):89–106, 2004.

[69] Bertrand Meyer. Applying “Design by Contract”. IEEE Computer, 25(10),
1992.

[70] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The JIVE system—
implementation description. FernUniversität Hagen, 2000.

[71] G. C. Necula. Proof-carrying code. In Proceedings of POPL’97, pages 106–119.
ACM Press, 1997.

[72] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[73] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Proceedings of the 15th
International Workshop on Computer Science Logic, CSL ’01, pages 1–19,
London, UK, 2001. Springer-Verlag.

[74] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, CADE, volume 607 of Lecture
Notes in Computer Science, pages 748–752. Springer, 1992.

[75] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential
Java. In S. Doaitse Swierstra, editor, ESOP, volume 1576 of Lecture Notes in
Computer Science, pages 162–176. Springer, 1999.

[76] John C. Reynolds. Theories of Programming Languages. Cambridge University
Press, Cambridge, England, 1998.

[77] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74. IEEE Computer Society, 2002.

[78] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[79] Natarajan Shankar. Automated deduction for verification. ACM Comput. Surv.,
41:20:1–20:56, October 2009.

59

[80] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound
checker. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, POPL ’77, pages 132–143, New York,
NY, USA, 1977. ACM.

[81] R. D. Tennent. Specifying Software. Cambridge University Press, New York,
NY, USA, 2001.

[82] David von Oheimb. Hoare logic for mutual recursion and local variables. In
Foundations of Software Technology and Theoretical Computer Science, pages
168–180, 1999.

[83] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

[84] Glynn Winskel. The Formal Semantics of Programming Languages: An
introduction. Foundations of Computing. The MIT Press, Cambridge,
Massachusetts, 1993.

60

