

HopliteRT* : Real-Time NoC fo r FPGA
This article was presented in part at the International Conference on Embedded
Software 2020 and appears as part of the ESWEEK-TCAD special issue.

Journal Paper

CISTER-TR-201102

Yilian Ribot; Geoffrey Nelissen

Journal Paper CISTER-TR-201102 HopliteRT*: Real-Time NoC for FPGA

© 2020 CISTER Research Center
www.cister-labs.pt

1

HopliteRT*: Real-Time NoC for FPGA

Yilian Ribot; Geoffrey Nelissen

CISTER Research Centre

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

https://www.cister-labs.pt

Abstract
With the increasing number of computation nodes integrated in multi and many-core platforms, network-on-chips
(NoCs) emerged as a new communication medium in systems-on-chips (SoCs). HopliteRT is a new NoC design that
was recently proposed to address the needs of real-time systems whilst respecting the constraints of field-
programmable gate array (FPGA) platforms. In this article, we: 1) introduce priority-based routing in HopliteRT; 2)
change the network topology in order to improve the packets 19 worst-case traversal time (WCTT); 3) identify a
flaw in the existing timing analysis of HopliteRT; and 4) develop a new timing analysis that is proven correct. We
also show by means of experiments that the modifications of HopliteRT proposed in this article allows for at least
2× improvement on the worst and average case traversal time of high priority packets, without impacting the
quality of service of low-priority packets. The timing properties of high priority flows are greatly improved for
negligible additional hardware costs. The proposed NoC has been implemented in Verilog and synthesized for a
Xilinx Virtex-7 FPGA platform.

3650 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

HopliteRT*: Real-Time NoC for FPGA
Yilian Ribot González and Geoffrey Nelissen

Abstract—With the increasing number of computation nodes
integrated in multi and many-core platforms, network-on-chips
(NoCs) emerged as a new communication medium in systems-on-
chips (SoCs). HopliteRT is a new NoC design that was recently
proposed to address the needs of real-time systems whilst respect-
ing the constraints of �eld-programmable gate array (FPGA)
platforms. In this article, we: 1) introduce priority-based routing
in HopliteRT; 2) change the network topology in order to improve
the packets’ worst-case traversal time (WCTT); 3) identify a �aw
in the existing timing analysis of HopliteRT; and 4) develop a new
timing analysis that is proven correct. We also show by means
of experiments that the modi�cations of HopliteRT proposed in
this article allows for at least 2× improvement on the worst
and average case traversal time of high priority packets, with-
out impacting the quality of service of low-priority packets. The
timing properties of high priority �ows are greatly improved
for negligible additional hardware costs. The proposed NoC has
been implemented in Verilog and synthesized for a Xilinx Virtex-7
FPGA platform.

Index Terms—Field programmable gate array, network-on-
chips, real-time embedded systems, systems-on-chips, timing
analysis.

I. I NTRODUCTION

SYSTEMS-ON-CHIPS (SoCs) are usually composed of
several, possibly heterogeneous, processing elements

(PEs). In order to communicate, PEs used to rely on shared
busses. However, due to the large increase of on-chip ele-
ments during the last decade, communication through shared
busses is not an appropriate solution for such platforms any-
more. Indeed, at most one node can take control of a bus and
transmit data at each cycle. This causes a bottleneck for the
overall system. Network-on-chips (NoCs) have been identi�ed
as a good alternative to palliate this issue. NoCs are router-
based packet switching networks and hence allow several PEs
to transmit messages in parallel. As discussed in [1] and [2],
NoCs have remarkable scalability, parallelism, and reusability
properties, and help meet system-wide power requirements.
Nevertheless, the use of NoCs in real-time systems requires
also that their transmissions respect timing constraints.

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current ver-
sion October 27, 2020. This work was supported by National Funds through
FCT/MCTES (Portuguese Foundation for Science and Technology), within
the CISTER Research Unit under Grant UIDB/04234/2020. This article was
presented in part at the International Conference on Embedded Software 2020
and appears as part of the ESWEEK-TCAD special issue.(Corresponding
author: Yilian Ribot González.)

Yilian Ribot González is with the CISTER Research Centre, ISEP,
Polytechnic Institute of Porto, 4200-465 Porto, Portugal (e-mail:
ribot@isep.ipp.pt).

Geoffrey Nelissen is with the Department of Mathematics and Computer
Science, Eindhoven University of Technology, 5612 AZ Eindhoven, The
Netherlands.

Digital Object Identi�er 10.1109/TCAD.2020.3012748

Concurrently to the growing complexity of SoCs, the capa-
bility improvements of �eld-programmable gate array (FPGA)
platforms, and their �exibility to implement any digital func-
tionality by programming recon�gurable elements, have pro-
moted FPGAs as a valid alternative to application-speci�c
integrated circuits (ASICs) for the development of custom-
made SoCs. FPGAs allow designing systems with a high
degree of parallelism and high data processing rate at a
relatively low cost. A complete SoC composed of multiple
soft-core processors [i.e., multiprocessor SoC (MPSoC)] may
be implemented on an advanced FPGA (e.g., [3]). However,
the number of soft-core processors that may be embedded is
limited by the capacity of such platforms (i.e., limited by the
number of FPGA’ recon�gurable elements, called LCs). Most
FPGAs do not supply enough resources to embed complex
NoCs together with a large number of PEs.

The literature on NoCs is extensive. NoCs can differ con-
siderably depending on their design features. Most of the
proposed solutions that present suitable properties for real-
time systems (i.e., those with deterministic behaviors and
bounded worst-case timing properties) with dynamic traf�c
rely on wormhole switching [4] with virtual channels (VCs),
and often implement some sort of priority-driven routing arbi-
tration. VCs are buffers located in the input or output ports of
each router. They allow storing �its (identically sized elements
into which packets are divided) coming from different ports
in a parallel fashion and then decide which one should be sent
based on their priority. VCs are the backbone of the most com-
mon real-time NoCs arbitration policies that have been studied
in the real-time systems, e.g., [5] and [6]. These strategies
develop powerful NoC infrastructures with bounded WCTT
but: 1) they are expensive to implement in terms of hardware
surface requirements (especially in FPGA platforms); 2) their
buffers and VCs increase the overall power consumption of the
platform; and 3) their complexity renders their analysis com-
plex as evidenced by the number of issues that were recently
discovered and exposed in [7]–[10].

Most prominently, NoCs based on VCs such as those men-
tioned above require around 100 000 LCs to implement an 8× 8
NoC, that is, between 20% and 150% of the total number of
LCs that can be found in typical mid-range FPGAs. Therefore,
VC-based NoCs are not suitable for systems implemented over
FPGAs. In complete opposition, Hoplite is a newly proposed
NoC infrastructure [11]. It is bufferless, does not use VCs,
and each router is composed of only a few LCs. An 8× 8
NoC requires 1%–8.5% of the total number of LCs offered
in a mid-range FPGA. Nevertheless, Hoplite does not provide
WCTT bounds and hence is not suitable for real-time systems.

Introduced by Waslyet al. [12], HopliteRT is a variation
of Hoplite that makes it compatible with real-time systems’

0278-0070 c� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3651

requirements. However, even though it bounds the packets
WCTT, in the worst-case scenario it may still require a �it
to travel through every router in the network before reaching
its destination. HopliteRT also treats all packets identically,
i.e., it does not allow to associate different priorities, and thus
the quality of services to different packets.

Contribution: In this article, we propose a new NoC design
called HopliteRT* that keeps the advantages of HopliteRT
while improving its real-time capabilities. The main contri-
butions of this article are as follows.

1) To propose a solution to reduce the WCTT of a packet.
2) To introduce a notion of quality of service in the routing

policy.
3) We identi�ed a �aw in the timing analysis of HopliteRT

and present a counter example.
4) We propose a worst-case communication time (WCCT)

analysis of HopliteRT*.
5) We implemented our NoC in Verilog (a hardware

description language) that can be instantiated on a real
FPGA platform.

6) We present evaluation results of our new design against
related work in terms of hardware requirements and
computed WCCT bounds.

As discussed later in Section VI, contribution 4) shows
that the changes introduced by contributions 1) and 2) allow
the transmission of high priority packets to be, in the worst-
case, twice as fast as in the original HopliteRT design without
impacting the quality of service of low-priority packets, and
in the average case, to be up to four times faster.

II. RELATED WORK

Several NoC designs based on time-triggered routing arbi-
tration protocols have been proposed over the years to address
real-time systems requirements (e.g., [13] and [14]). It allows
to isolate the timing properties of different �ows by allocat-
ing precalculated transmission slots to them. This approach
is extremely reliable and especially suited to critical systems.
However, they require to know the complete system speci�-
cation at con�guration time and does not allow to adapt to
changes in the system workload at runtime.

Several works [15], [16] have been published on the
analysis of wormhole switching NoC with shared VCs as
found in many COTS multi/many-core platforms, e.g., Kalray
MPPA [17] and Tilera Tile [18].

Shi and Burns [19] proposed a WCTT analysis for a real-
time NoC adopting a �xed priority preemptive routing protocol
in which each priority level is assigned its own VC. Several
variations of that NoC and its analysis were proposed over
the years, for instance, handling the case where several �ows
share the same priority [20], changing the routing policy to
EDF [21], or supporting communication �ows with different
criticality levels [22], [23]. However, the complexity of the
NoC design and its routing policy led to several issues in
their analysis [7]–[10]. To try to avoid the problematic cases
mentioned in those publications, Nikolicet al. [24] recently
proposed a new type of NoC relying on a global arbitra-
tion protocol centered around a CAN bus shared between
all routers. Theoretical results are promising but one must

still implement such NoC in a real platform. Alternatively,
Giroudot and Mifdaoui [25], [26] addressed most of the
limitations of the previous work by proposing a worst-case
timing analysis of wormhole NoCs using network calculus.
IDAMC [5] is another wormhole-based NoC designed specif-
ically for mixed-criticality systems that use the back suction
�ow-control to implement service guarantees.

Hoplite is an inexpensive NoC design �rst proposed in [11]
and [27]. Its routing policy is built upon the concept of de�ec-
tion to avoid the cost of packet buffering, which makes it
compact but does not allow to provide a bounded WCCT.
Thus, it is not suited to real-time systems. Introduced in [12],
HopliteRT is a variant of Hoplite that introduces: 1) a new
routing protocol to prevent unbounded traversal times and
2) implements a traf�c injection regulation protocol at each PE
in order to avoid resource starvation. Thus, HopliteRT keeps
the simplicity of Hoplite while ensuring bounded communi-
cation times for all communication �ows. Finally, HopliteBuf
is an evolution of HopliteRT that completely eliminates the
notion of de�ections and provides in-order packet deliv-
ery [28]. However, it requires to add large buffers in each
router and hence increases the resource and power require-
ments of the NoC. The WCTT guaranteed by HopliteBuf is
identical to that of HopliteRT.

III. SYSTEM MODEL

In this article, we assume a system composed ofm PEs
{� 1, . . . , � m} organized in a torus of sizeSx × Sy. Each PE
� k is connected to a different routerRk. The coordinates of
the PE� k (and its routerRk) in the torus are(xk, yk) with
0 � xk < Sx and 0� yk < Sy.

Each PE � k injects a set ofnk communication �ows
Fk = { f1, f2, . . . , fnk} into the network. A communication �ow
fi is de�ned by the tuple{xi

o, yi
o, xi

d, yi
d, prioi , Ci , Ti}. A com-

munication �ow fi generates a potentially in�nite number of
packets that are injected at coordinates(xi

o, yi
o) of the NoC

and must reach the PE at coordinates(xi
d, yi

d). fi respects a
minimum interarrival timeTi between the generation of every
two packets. Each packet sent by �owfi is divided inCi �its
that are sequentially injected in the network. Each �it has a
sizeS�it (in bits). We assume that all the routing information
is encoded in each �it of the packet, i.e., there is no distinction
between header, body, or tail �its. The routing information is
composed of the coordinates of the destination PE, and 1 bit
encoding the priority prioi (equal to high or low) of the asso-
ciated �ow. We denote the sets of high and low priority �ows
as hp= { fi | prioi = high} and lp= { fi | prioi = low}.

IV. BACKGROUND

In this section, we recall useful properties of HopliteRT and
prove that its published timing analysis is incorrect.

A. HopliteRT Routing Protocol

Introduced in [12], HopliteRT is a variant of Hoplite that
provides an upper bound on the WCTT of packets. HopliteRT
implements a modi�ed version ofX-Y routing [a type of
dimension ordered routing (DOR)]. Packets �rst travel east
along thex-axis until they reach a router with the sameX

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3652 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 1. Hoplite and HopliteRT designs. (a) HopliteRT router. (b) HopliteRT’s
routing policy.

TABLE I
ROUTING TABLE OF HOPLITERT

coordinate than their destination. The packet then turns south
to travel along they-axis until their destination. HopliteRT’s
routing policy differs fromX-Y routing in that it allows pack-
ets to be “de�ected” east while traveling south. A de�ected
packet must then travel along thex-axis again until reaching
the same router where it was de�ected and resume its journey
south. Speci�cally, a packet may enter in a router by itsN, W,
or PE port [see Fig. 1(a)]. Packets entering by theW or PE
port may request to go to theSor E output port. Packets enter-
ing by theN port may only request theS port. The packets
injected by a programming element through the PE port always
have the lowest priority and must wait for the requested port
to be free. If both a packet entering byW and another entering
by theN port request theS port at the same time, HopliteRT
always gives the highest priority to the packet entering by the
W port and de�ects the packet entering by theN port toward
the E port instead (see Table I).

Example:In Fig. 1(b), both the red packet (entering by the
N port) and the green packet (entering by theW port) request
to go south. Since theW port is given higher priority in the
routing policy, the green packet pursues its route to theS port
while the red packet is de�ected toward theE port.

Note that because de�ected packets travel along thex-axis,
they will always enter by theW port, and hence will have the
highest priority the next time they will require to go south.
Therefore, the maximum number of de�ections suffered by a
packet can be upper bounded as discussed in Section IV-C.
Nonetheless, a packet may be de�ected after each and every
hop on they-axis, thereby leading to possibly large WCTTs.

Additionally, HopliteRT implements a traf�c injection regu-
lation protocol at each PE port in order to avoid programming
elements to limit the number of packets that it may send in
bursts when the output ports are available. This avoids some

PEs to be inde�nitely blocked because of unfair use of the
bandwidth by other PEs.

B. HopliteRT Router Architecture

In HopliteRT, a router is implemented using two mul-
tiplexers of three inputs [see Fig. 1(a)]. HopliteRT takes
advantage of the possibility offracturing the lookup tables
(LUTs) of modern FPGAs (i.e., the possibility to use a sin-
gle LUT to implement two functions that would normally
require two different LUTs) to reduce the implementation cost
of the expensive crossbar multiplexers. The modern families of
Xilinx FPGAs present 6-inputs LUTs that can be fractured in
two 5-inputs LUTs sharing the same �ve input signals. Since
each 3:1 multiplexer can be implemented with a 5-inputs LUT,
the two multiplexers of the router can be implemented with a
single 6-inputs LUT.

C. HopliteRT Worst-Case Traversal Time

The WCTT wctt of a �it transmitted with HopliteRT
between two nodes with coordinates(xo, yo) and (xd, yd) in
a torus of sizeSx × Sy is given by (1) (in clock cycles) [12]

wctt = hx + hy +
�
hy × Sx

�
+ 2 (1)

wherehx and hy are the distances traveled by the packet on
the x- andy-axes, respectively, when it does not contend with
any other packet (i.e., without any de�ection). Then

hx = (xd Š xo + Sx) mod Sx (2)

hy =
�
yd Š yo + Sy

�
mod Sy (3)

where mod is the modulo operator.
The term (hy × Sx) in (1) accounts for the total cost of

potential de�ections; according to HopliteRT’s routing policy,
a packet can be de�ected at mosthy times and each such
de�ection increases the packet’s traversal time bySx hops.
The two additional hops in (1) represent the injection of the
�it into the network by the PE and its exit at its destination.

A bound on the worst-case injection time (i.e., worst-case
delay before a PE may be able to inject a packet into the NoC)
is also proposed in [12]. However, as shown below by means
of a counterexample that bound is incorrect as it may return
optimistic and hence unsafe results.

D. Counterexample to the WCIT Bound of [12]

The traf�c injection regulation protocol of HopliteRT is
implemented using a leaky bucket implemented with two cas-
caded counter at each PE� k: 1) a rate counter and 2) a token
counter. The �rst counter over�ows every� k cycles, where� k
is the �it injection period of the programming element� k.
Then, the second counter is incremented on each over�ow
until it reaches a maximal value� k. The value of the token
counters determines the maximum number of �its that the pro-
gramming element can inject consecutively. The value of the
token counter is decremented whenever a �it is injected in the
network by� k.

Let � C
p denote the set of �ows that con�ict with the injec-

tion of a packetp of �ow fi by � k. Then,� (� C
p) and �(� C

p)

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3653

Fig. 2. Counter-example to the WCIT bound of [12] and [29].

de�ne the cumulative burst length and injection rate of the
con�icting �ows, respectively. Waslyet al. [12], [28], [29]
proved that if�(� C

p) < 1 (i.e., the cumulative injection rate of
con�icting �ows is less than 1 packet/cycle) eventually there
will be available clock cycles, hence the injection ofp will
not be in�nitely blocked. Then, (4) is presented as a bound
on the WCIT of a �ow fi injected by� k, assuming that the
condition �(� C

p) < 1 is satis�ed

wcit = (� k Š 1) + B(p) (4)

with

B(p) =

�

�
�
�

�
�
� C

p

�

1 Š �
�
� C

p

�

�

	
	
	

(5)

where� (� C
p) =

fl � � C

p
� l and �(� C

p) =

fl � � C
p
(1/� l).

Note (5) above assumes that a con�icting �ow inherits the
burst length and injection period of its origin router, i.e.,� l
and � l refer to the burst length and regulation period of the
origin router of �ow fl .

Now, consider the system presented in Fig. 2. It consists
of three �ows f1, f2, andf3. f1 is injected in router(1, 0) and
has for destination(1, 6). f2 is injected at(0, 1) and has for
destination(1, 2). f3 is injected at(0, 3) and has for destination
router (1, 4).

We are interested about the maximum blocking delayB(p)
suffered by a packetp injected to theSport of the router(1, 5).
The set of con�icting �ows � C

p = { f1}, i.e., only f1 may pass
through theS port of router(1, 5) and block packetp.

Assume that the burst length� 1 = 1 and the regulation
period � 1 = 4 at f1’s origin router. Then, according to (5),
the maximum amount of time theS port of the router(1, 5)
may be kept busy by con�icting �ows is given byB(p) =
� (� (� C

p))/(1 Š �(� C
p))� = � 1/(1 Š (1/ 4))� = 2.

However, let us now assume thatf1 injects three packets at
times 0, 4, and 8 (note that those times respect the regulation
period of 4 atf1’s origin router). Then, assume thatf2 injects
packets at times 0 and 4. This means that the two �rst packets
of f1 will be de�ected by packets off2 in router (1, 1) while
the third packet off1 will not be de�ected. Therefore, the

Fig. 3. HopliteRT* priority-based routing example. (a) Packet route requests.
(b) Situation after routing arbitration.

three packets off1 will reach router(1, 2) at times 5, 9, and
10, respectively. Now, suppose that �owf3 injects a packet
at time 5. Then, the �rst packet off1 will be de�ected for a
second time in router(1, 3). That is, the three packets off1 will
reach router(1, 5) at times 11, 12, and 13, respectively. Since
they all arrive at one clock cycle of the interval, this means that
the S port of router(1, 5) will be kept busy by the con�icting
�ow f1 during three clock cycles, thereby contradicting (5).

We conclude that the analysis in [12], [28], and [29] is
incorrect because it forgot to account for the fact that differ-
ent packets of the same �ow may suffer different numbers of
de�ections on their route to their destination.

V. I MPROVING HOPLITERT’S REAL-TIME CAPABILITIES

In this section, we present HopliteRT*, a variant of
HopliteRT designed to: 1) introduce priorities in the routing
policy and 2) decrease the WCTT of high-priority packets
while keeping the WCTT of low-priority packets bounded.
We prove a new WCTT and WCIT analysis in Section VI.

A. Introducing Priority Levels

A requirement of many real-time embedded systems is to
provide different quality of service to different classes of traf-
�c. It is classically done by assigning different priorities to
those classes. Thus, we add a notion of packet priority in the
arbitration mechanism of HopliteRT*. It is based on two prior-
ity levels (low and high) routing scheme. Our main objective
is to ensure that low priority packets cannot interfere with the
WCTT of high priority packets.

In HopliteRT, the packets coming from theW port always
have the highest priority. Instead, in HopliteRT*, low priority
packets coming from theW port will never be permitted to
de�ect high priority packets coming from theN port (see Fig. 3
for an example). That is, if a high priority packet coming from
the N port [red packet in Fig. 3(a)] and a low priority packet
coming from theW port [green packet in Fig. 3(a)] con�ict
for the S port, then theN packet wins the right to use the
S port, and theW packet is de�ected toward theE port [see
Fig. 3(b)]. In any other case, the routing policy is the same as
in HopliteRT (refer to Section IV-A and Table I). To implement
this new routing policy, the packet priority is encoded in its
most signi�cant bit. Table II summarizes the routing policy of
HopliteRT*.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE II
ROUTING TABLE OF HOPLITERT*

B. Ensuring Progress

Even though it looks bene�cial, the new priority-based rout-
ing policy described in Section V-A is in fact extremely inef-
�cient; the WCTT of high priority packets remains unchanged
(only their average-case traversal time is potentially reduced),
but more importantly, the WCTT of low priority packets is not
bounded anymore.

Consider the red packet in Fig. 1(b). Since that packet was
de�ected, it will hop throughSx routers (whereSx is the num-
ber of routers on thex-axis) before entering again in the same
router in which it was initially de�ected. That is, the packet
did not progress at all toward its destination after thoseSx
additional hops. If the red packet has a low priority, it may
again be de�ected in the same router, and again, it will not
experience any progress during the nextSx hops.

We prevent the lack of progress discussed above by chang-
ing the network topology. We connect the routers together
considering acirculant topologyas shown in Fig. 4(a). In that
topology, all routers are connected by a single unidirectional
ring (red links in Fig. 4). Then, every pair of routers that areSx
positions apart on the ring are connected by a bypass (green
and black links in Fig. 4). Equivalently, if we look at the
network as a grid [see Fig. 4(b)], the main unidirectional ring
(in red) corresponds to the rows of the torus where theE port
of the last router in row numbery is connected to theW port
of the �rst router in row number(y + 1) mod Sy. Similarly,
the bypasses (green and black in the �gure) correspond to the
links on the columns of the torus, where the last router in a
column is connected to the �rst router in that same column.
That is, in Fig. 4, the green links in the inset (a) correspond
to the green links in the inset (b).

Thanks to this new topology, when a packet is de�ected,
thenSx hops later, it reaches the same router as it would have
if it was not de�ected. That is, the packet always progresses
toward its destination even when de�ected. Consequently, the
WCTT of all packets is: 1) bounded and 2) decreases in
comparison to HopliteRT (see Section VI).

Note that the circulant topology does not suffer from the
same limitations as the traditional ring topology as it is fully
scalable. Indeed, the bypasses allow the NoC to have as much
bandwidth as with a torus topology.

Fig. 4. Circulant topology of HopliteRT* and its router architecture.
(a) Circulant topologyC(16;1,4). (b) Equiv. grid representation. (c) Router
microarchitecture.

C. Modi�cation to the Router Architecture

The new topology of HopliteRT* requires to slightly mod-
ify the router design. Indeed, originally, in the particular case
where two packets arrive at the same instant in the same router
(via the W and N ports) and that router is their destination,
HopliteRT would send one packet to the programming element
and would de�ect the other to theE port. Then, the de�ected
packet would travel around the whole row in order to reach
its destination router once more and �nally be sent to the PE.
If the same approach was adopted in HopliteRT*, because of
the change of topology, the de�ected packet may have had
to travel around the entire network (instead of just the current
row) before reaching its destination router for the second time.
This situation causes a remarkable and unacceptable increase
in the WCTT of the de�ected packet. We aim at solving this
issue by allowing the programming element connected to the
router to read both packets simultaneously. For this reason, we
connect inputs of the programming element to both theE andS
ports of the router (instead of just theSport as in HopliteRT).
We call those PEo1 and PEo2 in Fig. 4(c). That is, PEo1 shares
its wires with theS port and PEo2 share its wires with theE
port. Additionally, a new wire is used to signal the availability
of a message to the PE on theE port. Sharing output ports
with the inputs of the PE slightly increases the complexity
of the logic in the router, but it avoids the implementation of
expensive multiplexers.

To accommodate the arrival of packets on a PE’s output
ports, we consider that each PE has two FIFO queues, one per
output port. By connecting PEo1 and PEo2 to these buffers,
we ensure that each PE will be able to serve two petitions
per cycle (i.e., one from PEo1 and PEo2) and, therefore, no
backpressure is created in the network.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3655

We also consider that each PE has two FIFO queues (which
may be implemented in software or hardware), one per priority
level, for �its that are pending to be injected into the network.
High priority packets are injected �rst in the network. Flits
of low priority �ows are injected only when the high priority
FIFO queue is empty. That is, high priority packets do not
suffer delay due to low priority packets sent by the same PE.

Additionally, in this article, we assume that there is no traf�c
injection regulator at PEs, that is, PEs can inject �its as fast
as possible. However, we assume that each �ow may have at
most one packet in the FIFO queue pending to be injected
in the network at any time instant. After injecting a packet,
a new packet from the same �ow can be stored in the FIFO
to be injected in the network. In other words, we assume that
� fi , Ti � wciti .

VI. B OUND ON THE WORST-CASE COMMUNICATION TIME

In the previous section, we described HopliteRT*. In this
section, we propose an analysis of the worst-case commu-
nication time (WCCT) between two PEs connected with
HopliteRT*. The WCCT of a packet is de�ned as the sum
of the maximum amount of timewcit during which the last
�it of the packet must wait in the PE before to be injected
in the network, and the maximum amount of timewctt taken
by any �it of the packet to traverse the network and reach its
destination. Thus, the WCCT of a packet pertaining to �owfi
is de�ned as

wccti = wciti + wctti (6)

wherewciti is the worst-case injection time andwctti is the
WCTT of �ow fi . To avoid notation clutter, we omit to specify
the index of the �ow when referring to their WCTT and WCIT
when there is no ambiguity.

A. Worst-Case Traversal Time

We start by deriving a bound on the WCTT of any �it
of a packetp. A bound on the WCIT will be proven in
Section VI-C.

We decompose the WCTT of a �it of �owfi in two terms

wctti = ni
hops(xd, yd) + ni

def(xd, yd) × cdef (7)

whereni
hops(xd, yd) is the number of hops in a network with

zero load (i.e., when the �it does not suffer any de�ection)
until its destination(xd, yd), ni

def(xd, yd) is the maximum num-
ber of de�ections suffered by the �it on its route until its
destination, andcdef is the cost of a de�ection. As for WCTT
and WCIT, in the following, we omit the superscripti of
ni

hops(xd, yd) and ni
def(xd, yd) when there is no ambiguity on

the �ow to which it refers.
The termnhops is de�ned as

nhops(xd, yd) = hr (xd, yd) + hb(xd, yd) + 2 (8)

wherehr (xd, yd) andhb(xd, yd) are the number of hops on the
ring and bypasses, respectively, until the destination(xd, yd).
The additional two hops account for the injection (at the source
node) and exit (at the destination node) of the �it into and
from the network. In the following, we prove upper bounds

for hr (xd, yd) (Lemma 1),hb(xd, yd) (Lemma 2),ndef(xd, yd)
(Lemmas 3 and 5), andcdef(xd, yd) (Lemma 6).

Lemma 1:The number of hops on the ring by a �it of �ow
fi to reach a destination(x, y) in a zero-load network is given
by hi

r (x, y) = (x Š xi
o + Sx) mod Sx.

Proof: According to our routing policy, each �it travels �rst
through the ring from the origin router at coordinate(xi

o, yi
o)

until it reaches a router with the sameX coordinatex as the
destination. According to the topology presented in Fig. 4(b),
the number of hopshi

r (x, y) on the ring is thus,(xŠ xi
o) when

x � xo and (x Š xi
o + Sx) when x < xo. That is, hi

r (x, y) =
(x Š xi

o + Sx) mod Sx.
Lemma 2:The number of hops on bypasses by a �it of �ow

fi to reach a destination(x, y) in a zero-load network is given
by hi

b(x, y) = (y Š yi	
o + Sy) mod Sy, where

yi	
o =

�
yi

o, whenx � xi
o

yi
o + 1, whenx < xi

o.
(9)

Proof: Remember that a bypass in Fig. 4(a) corresponds to
a link of a column of the modi�ed torus in Fig. 4(b). LetSy be
the number of routers in a column, andyi	

o be theY coordinate
of the router at which the packet stops traveling on the ring
and starts using bypasses (i.e., the �rst router with the same
X coordinate as the destination). Then, according to the router
numbering shown in Fig. 4(b),yi	

o = yi
o when x � xi

o and
yi	

o = yi
o + 1 whenx < xi

o, and the number of hopshi
b(x, y) on

the y-axis of the torus isy Š yi	
o wheny � yi	

o andy Š yi	
o + Sy

otherwise. That is,hi
b(x, y) = (y Š yi	

o + Sy) mod Sy.
The maximum number of de�ectionsndef(x, y) that a �it

may suffer until its destination(x, y) differ for high and low
priority packets. We analyze both cases in Lemmas 3 and 5.

Lemma 3:The maximum number of de�ections suffered by
a �it of a low priority packet with destination(x, y) is bounded
by ndef(x, y) � hb(x, y).

Proof: According to HopliteRT*’s routing policy, a low
priority �it entering from the W or N port may always be
de�ected. Therefore, a low-priority packet may be de�ected
as many times as it may try to use a bypass, i.e.,hb times.

Lemma 4:A �it of a high priority packet cannot be
de�ected in two successive routers on the same column (i.e.,
two routers directly connected to one another by theirS and
N ports).

Proof: We prove this lemma by contradiction. Consider that
the high priority �it is de�ected in two successive routersRk
and Rl on the same column of the modi�ed torus (i.e., the
S port of Rk is connected to theN port of Rl). Because the
�it is de�ected in Rl , then, according to the routing policy of
HopliteRT*, it must have entered by theN port of Rl . That is,
it must have exitedRk by theS port. Since the �it leftRk by
the S port, it means that it was not de�ected inRk, thereby
leading to a contradiction.

Lemma 5:The maximum number of de�ections suffered
by a �it of a high priority packet with destination(x, y) is
bounded byndef(x, y) �
 hb(x, y)/ 2� .

Proof: According to the routing policy of HopliteRT*, a
high priority �it can only be de�ected when it enters by the
N port of a router. That is, it can only be de�ected when it

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

travels along bypasses. Moreover, a �it can only use bypasses
that belong to the same column (i.e., sameY-coordinate).

By de�nition of hb(x, y), the �it under analysis does at
most hb(x, y) hops through bypasses, all of which are con-
secutive links of the same column of the modi�ed torus, and
at most(hb(x, y) Š 1) of those hops can be made by enter-
ing by theN port of a router. Furthermore, by Lemma 4, a
high priority �it cannot be de�ected in two successive routers
on the same column of the modi�ed torus. Therefore, the �it
under analysis may be de�ected in at most half of the routers,
i.e., in � (hb(x, y) Š 1)/ 2� =
 hb(x, y)/ 2� routers, which
proves the lemma. Note that the last equality holds because
hb(x, y) � N.

The additional cost in terms of hops introduced by each
de�ection is analyzed in Lemma 6.

Lemma 6:The cost of a de�ection iscdef = Sx Š 1.
Proof: When a �it is de�ected, it must hop throughSx

routers on the ring to reach the same router as it would have
if it could have used the bypass instead, i.e., thoughSx routers
instead of 1, thus leading to an additional cost ofSx Š 1.

Injecting all the bounds proven in Lemmas 3, 5, and 6 into
(7), we can compute the WCTT of any �it of any �owfi .

B. Improved Analysis for the WCTT

The analysis proposed in Section VI-A only uses
information on the packet under analysis and does not rely
on any information related to other communication �ows that
may be transmitted in the system. That analysis is thus useful
for dynamic systems where the set of communication �ows
may vary over time. However, it may also be pessimistic if
more information on the system is known. Indeed, the analysis
of Section VI-A always assumes that the packet under anal-
ysis will suffer the maximum number of possible de�ections.
This may never happen in the real network if, for instance,
there are no other �ows using the same route thanp. In this
section, we derive more precise bounds onndef based on the
knowledge of the actual set of �ows that can interfere with
the transmission of the packet under analysis.

To derive the sets of �ows that may interfere with a packet
p under analysis, we �rst de�ne the sets� N� S

k , � W� S
k , and

� E� S
k as the sets of �ows that traverse a routerRk from the

N to S ports, fromW to S, and fromW to E, respectively,
assuming that no de�ection ever happens in the network.

Lemma 7: � N� S
k = { fi | (xi

d = xk) hi
b(xk, yk) > 0

hi
b(xi

d, yi
d) � hi

b(xk, yk)}.
Proof: According to the modi�ed DOR routing policy

adopted by HopliteRT*, a �owfi may request to leave by the
S port of Rk only if its destination is on the same column of
the modi�ed torus thanRk (i.e., xi

d = xk) and its destination is
eitherRk or further south thanRk [i.e., hi

b(xi
d, yi

d) � hi
b(xk, yk)].

Furthermore, a �ow cannot enter by theN port of Rk if it must
not perform at least one hop on a bypass to reachRk, i.e., we
must havehi

b(xk, yk) > 0.
Lemma 8: � W� S

k = { fi : (xi
d = xk) hi

b(xk, yk) = 0}.
Proof: According to the modi�ed DOR routing policy

adopted by HopliteRT*, anonde�ected�ow fi may enter by
the W port only if it does not need to use any bypass to reach

Rk [i.e., hi
b(xk, yk) = 0]. Furthermore, it may request leav-

ing by theS port of Rk only if its destination is on the same
column of the modi�ed torus thanRk (i.e., xi

d = xk).
Lemma 9: � W� E

k = { fi : hi
b(xk, yk) = 0 hi

r (x
i
d, yi

d) >
hi

r (xk, yk)}.
Proof: According to the modi�ed DOR routing policy

adopted by HopliteRT*, anonde�ected�ow fi may enter by
the W port only if it does not need to use any bypass to reach
Rk [i.e., hi

b(xk, yk) = 0]. Furthermore, it may request to exit by
theE port only if the number of hops it must do on the ring to
reach its destination is larger than the number of hops it must
do on the ring to reachRk [i.e., hi

r (x
i
d, yi

d) > hi
r (xk, yk)].

We de�ne defhp
k and deflpk as binary functions that return 1

if high and low priority �ows may be de�ected in the router
Rk, respectively.

Lemma 10:Let Rn be the router directly north toRk, then

defhp
k =

�
�

�

1, � N� S
k � hp �= �

�
� W� S

k � hp �= � � defhp
n = 1

�

0, otherwise.

(10)

Proof: According to HopliteRT*’s routing policy, a high
priority �ow can be de�ected to theE port only if it is a �ow
incoming by theN port that con�icts for theS port (i.e., there
must be� N� S

k � hp �= �). Furthermore, con�icting �ows must
be of high priority too and must be incoming by theW port.
Since the �ows that were de�ected inRn are the onlyde�ected
�ows that may enter by theW port and request theS port of
Rk, there must either be defhp

n = 1 or there is at least one
nonde�ected �owentering by theW port and requesting theS
port (i.e., � W� S

k � hp �= �).
Lemma 11:Let Rn be the router directly north toRk, then

deflpk =

�
�

�

1, � N� S
k � hp �= �

�
� W� S

k � lp �= � � deflpn = 1
�

1, � N� S
k � lp �= �

�
� W� S

k �= � � deflpn = 1 � defhp
n = 1

�

0, otherwise.

(11)

Proof: According to HopliteRT*’s routing policy, a low pri-
ority �ow can be de�ected to theE port under two possible
scenarios: 1) it is a �ow entering by theW port that con�icts
for the S port (i.e., � W� S

k � lp �= �) with a high priority �ow
coming from theN port (i.e.,� N� S

k � hp �= �); or 2) if it is a
�ow coming from theN port that con�icts for theS port (i.e.,
� N� S

k � lp �= �) with any �ow coming from theW port. We
remind that the �ows that were de�ected inRn are the only
de�ected �ows that may enter by theW port and request the
S port of Rk. Therefore, for scenario 2) to happen, there must
be deflpn = 1 or defhp

n = 1, or there is at least onenonde�ected
�ow entering by theW port and requesting theS port (i.e.,
� W� S

k �= �). Scenarios 1) and 2) directly correspond to the
�rst and second case in (11), respectively.

The functions defhp
k and deflpk allows us to identify the set of

routers in which a �it may be de�ected. Therefore, thanks to
them, we can now compute the maximum number of de�ec-
tions a �it may suffer on its route to its destination. We �rst
derive such bound for low priority �its in Lemma 12.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3657

Lemma 12:The maximum number of de�ections suffered
by a �it of a low priority packetp of �ow fi with destination
(x, y) is

ndef(x, y) =
�

Rk� R b(p)

deflpk (12)

where R b(p) = { Rk | xk = x yk = (yi	
o + j) mod Sy� j =

0, . . . , hb(x, y) Š 1}.
Proof: The setR b(p) contains all the routers on the same

column x than the destination of �owfi and that are on its
route to its destination. That is, those routers between theY
coordinateyi	

o and the destinationy of the �ow. Therefore, it
contains all the routers in which a packet offi may be de�ected
(since a packet can only be de�ected in a router on the same
column of its destination and that is on its route to its desti-
nation). Since, by Lemma 11, deflp

k returns 1 if a low priority
packet may be de�ected in routerRk, and 0 otherwise, the sum

Rk� R b(p) deflpk returns the total number of routers in which
a packet offi may be de�ected.

The procedure to compute the maximum number of de�ec-
tions for a �it of a high priority packetp is a bit more complex.
Let us �rst de�ne the setR def(p) as the set of routers in
which a �it of the high priority packetp under analysis may
be de�ected. That is,R def(p) = { Rk | Rk � R b(p) defhp

k = 1},
whereR b(p) is de�ned as in Lemma 12. The size of that set
is obviously an upper bound on the number of de�ections that
may be suffered by a �it ofp. However, that value would
be very pessimistic. Indeed, according to Lemma 4, the same
high priority �it cannot be de�ected in two successive routers
in the same column of the modi�ed torus. Lemma 13 integrates
that information to compute a tighter bound on the maximum
number of de�ections suffered by a �it ofp.

Lemma 13:Let Gdef(p) be a graph that contains one vertex
per router inR def(p), and such that any two verticesVi and
Vj of Gdef(p) are connected by an edge if the routersRi and
Rj corresponding to those vertices are direct neighbors (i.e.,
they are connected by aS� N link). The maximum number
of de�ections suffered by a �it of the high priority packetp
is the size of the maximum independent set ofGdef(p).

Proof: The maximum independent set of a graphGdef(p) is
the largest subsetS of vertices ofGdef(p) such that any two
vertices inS is not connected by an edge inGdef(p).

Since vertices inGdef(p) are connected by an edge if and
only if they are neighbors in the NoC (i.e., they are connected
by aN � S link), the maximum independent setS of Gdef(p)
contains the largest possible number of routers fromR def(p)
that are not connected by aS � N link. That is, it contains
the largest number of routers in which a �it of packetp may
be de�ected and that are not successive routers in the same
column of the network. Therefore, it contains the maximum
number of routers in which a �it ofp may be de�ected while
respecting the constraint set by Lemma 4.

The new bounds on the number of de�ections provided
in Lemmas 12 and 13 can then be used instead of those in
Lemmas 3 and 5 to compute the WCTT with (7).

C. Worst-Case Injection Time

In the previous sections, we derived upper bounds on the
maximum traversal time of any �it of a packetp. In this sec-
tion, we provide an analysis for the worst-case injection time
of p.

We �rst discuss the best case injection scenario (Lemma 14)
for �ow fi . The worst-case injection scenario is then discussed
in Lemma 15.

Lemma 14:In any time interval of lengtht, the �ow fi can
transmit at most� i(t) = min{t, � (t + wciti)/ Ti � Ci} �its.

Proof: Since at most one �it can be sent byfi every clock
cycle, it holds that

� i(t) � t. (13)

Moreover, letwciti be the WCIT suffered by any packet of
�ow fi . Then,fi injects the most �its in an interval of length
t when one of its packet was kept from being injected during
wciti cycles before the beginning of the interval that packet
starts to be injected right at the start of the interval, new pack-
ets are generated with their minimum interarrival timeTi and
no �it of fi suffers blocking during the interval of lengtht.
Under such conditions, we have

� i(t) �
�

t + wciti
Ti

�
Ci . (14)

Since the minimum of two upper bounds is an upper bound,
the minimum of (13) and (14) is an upper bound on� i(t).

Now that we discussed the best case scenario, we consider
the worst-case delay that a �ow may experience to inject a
packet in the network. To ease the discussion, we denote by
� C

k the set of �ows that con�ict with the injection of a packet
p at routerRk. Let us assume that the set of con�icting �ows
� C

k is known. We can upper boundwciti as in Lemma 15.
Lemma 15:Let p be a packet of �owfi injected at router

Rk with coordinates(xk, yk). The WCITwciti caused by �ows
con�icting with packet p is given by the smallest positive
solution to the recursive equation

wciti �
�

� fl � I k

Cl +
�

� fj � � C
k

� j
�
wciti + Jj + 1

�
(15)

whereJj = nj
def(xk, yk) × cdef and

I k =
�

Fk, if prio i = low
Fk � hp, if prio i = high.

Proof: According to HopliteRT*’s routing policy, PE� k will
be able to inject the last �it of packetp as soon as: 1) all
�its previously pending in the FIFO queues of� k have been
injected and 2) there is one clock cycle where no packet from
other PEs con�icts for the same output port thanp. This hap-
pens as soon as the length of the interval is larger than the
maximum number of pending �its that must be injected by
� k and the maximum number of �its generated by con�icting
�ows injected by other PEs that con�ict to access the same
output port during the interval.

The term referred to in point 1) is given by the maximum
number of �its that may be generated by �ows on� k that
are ahead ofp in the FIFO queues of� k. Since each �ow

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

may have at most one packet in the FIFO queue at a time
(see Section V-C), we have that the maximum number of �its
ahead ofp is strictly smaller than

� fl � Fk

Cl . Furthermore,
according to Section V-C, low priority �ows injected by� k
cannot block high priority ones. Therefore, if the priority prioi
of fi is high, then strictly less than

� fl � Fk� hp Cl �its may be

sent ahead ofp in � k. Summarizing, at most
�

�
�

� fl � I k

Cl

�

� Š 1 (16)

�its generated by� k (with I k de�ned as in the claim) may
interfere with the transmission of the last �it of the packetp
under analysis.

To compute the term referred by point 2) in the explanation
above, consider the �owfj that may con�ict with the packetp
under analysis (i.e.,fj � � C

k). By de�nition of nj
hops(xk, yk),

�its from fj will reach the router(xk, yk) in no less than
nj

hops(xk, yk) clock cycles. That is, thelast �it generated by
fj that may con�ict with the injection ofp must have been
injected in the NoCno later than nj

hops(xk, yk) clock cycles
before the endof the period during whichp is interfered with.
Similarly, according to (7), �its from �ow fj will reach the
router (xk, yk) in no more than(nj

hops(xk, yk) + nj
def(xk, yk) ×

cdef) clock cycles. Thus, the�rst �it generated byfj that may
con�ict with the injection ofp must have been injectedno ear-
lier thannj

hops(xk, yk) + nj
def(xk, yk) × cdef clock cyclesbefore

the start of the interference withp. Therefore, the length of
the interval during whichfj may inject �its that con�ict with
the packetp under analysis is given by� t = wciti + 1 Š
nhops(xk, yk) + nhops(xk, yk) + nj

def(xk, yk) × cdef = wciti + Jj ,
whereJj = nj

def(xk, yk) × cdef and (wciti + 1) is the duration
of the time interval starting whenp is inserted inRk’s FIFO
queue and �nishing when the last �it ofp is injected in the
network.

As proven in Lemma 14, a �owfj can inject at most� j(� t)
packets in the network in any time interval of length� t.
Therefore, all the �ows that may interfere with the injection
of packetp can inject at most

�

� fj � � C
k

� j
�
wciti + Jj + 1

�
(17)

�its that may con�ict with p.
Combining (16) and (17), we get thatp may inject its last

�it as soon as

wciti + 1 �

�

�
�

� fl � I k

Cl

�

� Š 1 +
�

� fj � � C
k

� j
�
wciti + Jj + 1

�
.

Hence proving the lemma.
The set of �ows� C

k con�icting with the injection of a packet
p at a routerRk is composed of all the �ows injected by other
PEs that may request theE or S port of Rk. That is

� C
k = � S

k � � E
k (18)

where � S
k and � E

k are the set of �ows that may request the
S and E port of Rk, respectively. We de�ne� S

k and � E
k in

Lemmas 18 and 19. However, to compute� S
k and � E

k , we
must �rst de�ne the set� def

k of �ows that may be de�ected
in routerRk. We further divide that set in� def_hp

k and � def_lp
k

such that� def_hp
k is the set of high priority �ows that may be

de�ected inRk, and� def_lp
k is the set of low priority �ows that

may be de�ected inRk. By de�nition, � def
k = � def_hp

k � � def_lp
k .

Lemma 16:

� def_hp
k =

�
� N� S

k � hp, if defhp
k = 1

� , otherwise.

Proof: According to HopliteRT*’s routing policy, only high
priority �ows entering by theN port and contending for theS
port can be de�ected (i.e., all �ows in� N� S

k � hp). Therefore,
� def_hp

k = � N� S
k � hp when de�ections may happen in router

Rk (i.e., when defhp
k = 1). If no de�ection may happen in

Rk (i.e., defhp
k = 0), then the set of de�ected �ows inRk is

obviously empty.
Lemma 17:

� def_lp
k =

� �
� W� S

k � � N� S
k � � def

n
�

� lp, if deflpk = 1
� , otherwise

with Rn being the router directly north toRk.
Proof: First, remember that according to HopliteRT*’s rout-

ing policy, any �ow that is de�ected inRn (i.e., �ows in
� def

n) will enter in Rk by the W port and compete for the
S port. Furthermore, any low priority �ow entering by the
N or W port and contending for theS port can be de�ected
(i.e., all �ows in {� W� S

k � � N� S
k � � def

n } � lp). Therefore,
� def_hp

k = { � W� S
k � � N� S

k � � def
n } � lp when de�ections may

happen in the routerRk (i.e., when deflpk = 1). If no de�ection
may happen inRk (i.e., deflpk = 0), then the set of de�ected
�ows in Rk is obviously empty.

Now, we can de�ne� S
k and � E

k .
Lemma 18:The set of �ows coming from other routers that

con�ict on the S port of routerRk is given by� S
k = � N� S

k �
� W� S

k � � def
n whereRn is the router directly north toRk.

Proof: The S port of the routerRk may be kept busy by
any �ow entering by theN or W port of Rk and requesting
the S port. Since according to HopliteRT*’s routing policy,
the only de�ected �ows that may enter by theW port of Rk
and request theS port are those de�ected inRn (i.e., �ows in
� def

n), the set of all �ows that may request theS port of Rk is
� N� S

k � � W� S
k � � def

n (where� N� S
k � � W� S

k is the set of all
�ows that were not de�ected that may enterRk and request
the S port).

Lemma 19:The set of �ows coming from other routers that
con�ict on the E port of the routerRk is given by � E

k =
� W� E

k � � def
ring � � W� S

k � � def
n , whereRn is the router directly

north toRk and

� def
ring =

�

� Rl : (xl> xk yl= ykŠ1)� (xl< xk yl= yk)

�
� def

l

�
. (19)

Proof: Let Rn be the router that is directly north toRk
[i.e., router at coordinates(xk, yk Š 1)]. Then, according to
HopliteRT*’s routing policy, the only de�ected �ows that
may enter by theW port of Rk and request theE port are

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3659

TABLE III
RESOURCESUTILIZATION OF 8 × 8 NOCS IN M ID-RANGE FPGA

those that were de�ected in routers located betweenRn and
Rk on the ring of the NoC [i.e., any routerRl such that
(xl > xk yl = yk Š 1) � (xl < xk yl = yk)]. The set
of all those �ows is provided by� def

ring. Therefore, theE port
of Rk may only be requested by the �ows in� def

ring � � W� E
k ,

where� W� E
k is the set of �ows that are not de�ected in any

router and request theE port of Rk (note that there is no
�ow that may enter by theN port and request theE port).
Finally, the routing table of HopliteRT* (see Table II) does
not allow a packetp to be injected by the PE toward theE
port whenever there is packet enteringRk by the W port and
requesting theS port. Thus, the set of all �ows entering by
the W port and requesting theS port (i.e., � W� S

k � � def
n as

proven in Lemma 18) must be added to the set of con�icting
�ows, proving the lemma.

The results of Lemmas 18 and 19 can then be used to
compute the WCIT using Lemma 15 and (18).

VII. E XPERIMENTAL RESULTS

A. Implementation of HopliteRT*

We implemented HopliteRT* with the hardware descrip-
tion language Verilog taking advantage of the possibility of
fracturing the look-up tables in recent FPGA platforms. A
64-bits HopliteRT* router synthesized for a Xilinx Virtex-7
485T FPGA requires 88 LUTs and 139 Flip-Flops (FFs). It is
only three additional LUTs (after fracturation) in comparison
to HopliteRT. Note that a single HopliteRT* router requires
only 0.03% and 0.02% of the total number of LUTs and FFs
available in the Xilinx Virtex-7, respectively.

Next, we connected the router to a Microblaze soft core and
synthesized a 4× 4 network for a Virtex-7 485T using Xilinx
Vivado. We computed the maximum operating frequency and
obtained � 275 MHz for both HopliteRT and HopliteRT*,
thereby showing no degradation when adopting HopliteRT*.

Table III shows an approximation of the resource utiliza-
tion for the implementation of HopliteRT*, ProNoC [30],
IDAMC [5], and CONNECT [31] in a Xilinx Kirtex-7.
Contrary to the Virtex-7 that is targeting rather high-end
applications, the Xilinx Kirtex-7 is a mid-range product that
exposes approximately between 65 600 and 477 760 LUTs.
When we synthesized a single ProNoC router with two VCs
(equivalent to two priorities), it required 1574 LUTs, and
according to [31] and [32], a router of IDAMC requires� 1300
LUTs, and one of CONNECT approximately 1500 LUTs.
Thus, as reported in Table III, to implement an 8× 8 ProNoC
NoC, we need� 100 000 LUTs (IDAMC:� 83 000 LUTs and
CONNECT: � 96 000 LUTs), leaving very little space, if any,
for the computation logic. Those NoCs are thus too expen-
sive for such platforms. Conversely, an 8× 8 HopliteRT* NoC
consumes only 5632 LUTs, i.e., between 1.1% and 8.5% of the
Xilinx Kirtex-7 resources. Therefore, HopliteRT* is a suitable

solution for such FPGA platforms unlike virtual-channel-based
NoCs.

B. Analyses Results

In this section, we provide experimental results by comput-
ing the WCTT and WCCT of sets of communication �ows
generated under different system con�gurations, (i.e., distinct
NoC sizes, number of �ows, and traf�c patterns).

NoC Latency Bounds:We generated sets of �ows according
to two traf�c patterns: 1)random: the origin and destination
coordinates are randomly generated using a uniform probabil-
ity distribution of a �ow to originate and target any router in
the network and 2)all2one : origins are randomly gener-
ated but the same destination coordinates are assigned to all
the �ows. A priority level (low or high) is randomly assigned
to each �ow. The number of high priority �ows was roughly
kept at 50% of the total number of �ows in the network. The
number of �its of packets released by a communication �ow
was randomly chosen between 1 and 5, and their interarrival
times were generated as in [33].

In Fig. 5(a) and (b), we provide the results computed
by using the analysis of HopliteRT [12], [29], the analy-
sis presented in Section VI-A, and the improved analysis of
Section VI-B. We show the evolution of the maximum and
average packets WCTT for an increasing number of �ows in
a 16× 16 network considering arandom traf�c pattern. Each
point in the plot is the result of 100 experiments. We varied
the number of generated �ows from 10 to 300 by steps of 10.

The maximum WCTT observed over all �ows for both
HopliteRT and HopliteRT* is roughly the same. This can eas-
ily be explained by the fact that HopliteRT* has the same
WCTT bound than HopliteRT for low priority �ows. However,
high priority packets see their WCTT drastically reduced in
HopliteRT*. It is even more visible when looking at the results
returned by the improved WCTT analysis, which reduces con-
siderably the analysis pessimism by considering the actual set
of �ows that may interfere with each other. We also see that
the improved analysis gain reduces as the number of �ows
increases. This is expected since the number of interfering
�ows and hence the number of de�ections that �ows may suf-
fer increases when more packets are injected into the network.
Even though, we show that the average WCTTs of high prior-
ity �ows remain considerably lower than that of other �ows.
We also show that the modi�cations of HopliteRT introduced
in this article allow at least a 2× improvement on the worst
and average case traversal time of high priority packets, with-
out impacting the quality of service of low-priority packets,
and up to 5× improvement on the average traversal time when
there are few �ows. With aall2one traf�c pattern (see [34,
Fig. 7]), the improved WCTT bound of HopliteRT* returns
the same result as the simple bound of Section VI-A. That
can be explained by the fact that most packets compete for
the same resources (i.e., links and routers output ports) since
their destination is the same. Hence, the number of con�icting
�ows and the number of de�ections increase considerably for
all the packets in comparison to the random traf�c pattern.

In Fig. 5(d) and (c), we show the average and maximum
WCCT of a set of �ows with the origin and destination

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

3660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 5. Experimental results for a random traf�c pattern. (a) Max WCTT 16× 16 NoC. (b) Average WCTT 16× 16 NoC. (c) Max WCCT 4× 4 NoC.
(d) Average WCCT 4× 4 NoC. (e) Avg. measured WCTT 4× 4 NoC. (f) Packets WCCT 4× 4 NoC.

routers randomly chosen in a 4× 4 NoC. Those results were
obtained by using the improved analysis of HopliteRT* and
that presented in [20] by Liuet al., which is an improved
analysis of that proposed in [33] and [35] by Shi and Burns.
To establish a fair comparison, we assume two VCs (i.e., two
priority levels) for the analysis presented in [20]. We observe
that the analysis by Liuet al. performs better than that of
HopliteRT* in terms of average and maximum worst-case
communication time in most cases. We assume that it happens
because [20] considers that each �ow can only have one packet
traversing the network at the same time, while HopliteRT*
supports the transmission of multiple packets from the same
�ow simultaneously, leading to more possible contentions, as
well as, more pessimism in the HopliteRT*’s WCIT analy-
sis. However, we recall that a router similar to that assumed
by [20] is likely 10–20 times more costly from a hardware
viewpoint than a HopliteRT* router (see Table III).

We also use an autonomous vehicle application that has
been studied in [6] and [20], to compare the improved anal-
ysis of HopliteRT* and that by Liuet al. The application is
composed of multiple tasks that rely on 38 traf�c �ows to
communicate. The application is mapped on 16 PE connected
to a 4× 4 NoC. The parameters of traf�c �ows and their ori-
gin and destination routers are kept the same as those used
in [6]. The priority was assigned according to their period and
deadline, that is, �owsf8Šf30 were given the highest priority

Fig. 6. Experimental results for the case study.

since their periods/deadlines are the shortest. In Fig. 6, we
show that the WCCT of 14 �ows is noticeably better with
HopliteRT* in comparison to Liuet al.’s analysis [20]. The
WCCT of 12 �ows is noticeably better with Liuet al.’s anal-
ysis, and the last 12 �ows have comparable results with both
analyses. Therefore, we conclude that on a real use case, there
is no analysis that dominates the other.

RTL Simulations:We performed cycle-accurate simula-
tions of HopliteRT and HopliteRT* using HDL Verilog

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

RIBOT GONZÁLEZ AND NELISSEN: HopliteRT*: REAL-TIME NOC FOR FPGA 3661

implementations of 4× 4 NoCs. We con�gured each PE to
inject one, two, or three �ows in the network. We generated
�ows with a random traf�c pattern and random priorities. The
interarrival times of �ows were randomly chosen within the
set{100, 200, . . . , 1000}. The utilization of each PE was set at
20%, then the utilization of each �ow from the same PE was
generated using [36]. The number of �its in a �ow is given
by multiplying its utilization by its interarrival time. The �it
size was set to 64 bits.

In Fig. 5(e), we provide themeasuredaverage WCTT for
HopliteRT and HopliteRT*. We observe that packets reach
their destination considerably faster with HopliteRT*. Note
that the WCTT of high priority packets is higher than that
measured for low priority ones in HopliteRT. That is due to
HopliteRT not making any distinction between high and low
�ows. However, we show that by using HopliteRT*, the qual-
ity of service is guaranteed to �ows of high priority, and hence
their WCTT decreases. We provide the measured average
WCIT and WCCT in [34, Fig. 8].

In Fig. 5(f), we present the measured average WCTT in
HopliteRT* for a set of 32 �ows against the improved version
of the bound introduced in this article. In this experiment, each
PE can inject packets from two different �ows in the network.
We observe that our approach provides safe and mostly tight
upper bounds on the WCTT for high and low priority �ows.

VIII. C ONCLUSION

We presented HopliteRT*, a new NoC design with improved
timing performances at a marginal increase of the hardware
resource utilization in comparison to HopliteRT. The circu-
lant topology adopted by HopliteRT* reduces the number of
de�ections and therefore, the WCTT of high priority pack-
ets. We identi�ed an issue in the analysis of HopliteRT
and proposed a new timing analysis for HopliteRT*. We
also provided a complete implementation of HopliteRT* in
HDL Verilog. Both cycle-accurate emulation of the NoC on
a Xilinx7 FPGA and synthetic experiments show important
performance improvements in comparison to the related work.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chip: A new paradigm
for systems on chip design,” inProc. Design Autom. Test Europe Conf.
Exhibit., Mar. 2002, pp. 418–419.

[2] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: A scalable,
communication-centric embedded system design paradigm,” inProc.
IEEE 17th Int. Conf. VLSI Design, 2004, pp. 845–851.

[3] G.-G. Mplemenos and I. Papaefstathiou, “MPLEM: An 80-processor
FPGA based multiprocessor system,” inProc. IEEE 16th Int. Symp.
Field Program. Custom Comput. Mach., 2008, pp. 273–274.

[4] D. M. Holman and D. C. S. Lee, “A survey of routing techniques in
store-and-forward and wormhole interconnects,” Sandia Nat. Lab., U.S.
Dept. Energy, Washington, DC, USA, Rep. SAND2008-0068, 2008.

[5] S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “IDAMC: A NoC for
mixed criticality systems,” inProc. IEEE 19th Int. Conf. Embedded Real
Time Comput. Syst. Appl., 2013, pp. 149–156.

[6] Z. Shi, A. Burns, and L. Indrusiak, “Schedulability analysis for real time
on-chip communication with wormhole switching,” inProc. IJERTCS,
2010, pp. 1–22.

[7] Q. Xiong, Z. Lu, F. Wu, and C. Xie, “Real-time analysis for wormhole
NoC: Revisited and revised,” inProc. IEEE Int. Great Lakes Symp.
VLSI, 2016, pp. 75–80.

[8] Q. Xiong, F. Wu, Z. Lu, and C. Xie, “Extending real-time analysis for
wormhole NoCs,”IEEE Trans. Comput., vol. 66, no. 9, pp. 1532–1546,
Sep. 2017.

[9] L. S. Indrusiak, A. Burns, and B. Nikolić, “Buffer-aware bounds to
multi-point progressive blocking in priority-preemptive NoCs,” inProc.
Design Autom. Test Europe Conf. Exhibit., 2018, pp. 219–224.

[10] B. Nikolić, S. Tobuschat, L. Soares, R. Ernst, and A. Burns, “Real-
time analysis of priority-preemptive nocs with arbitrary buffer sizes and
router delays,”Real Time Syst., vol. 55, no. 1, pp. 63–105, Jan. 2019.

[11] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoCs for
FPGAs,” inProc. 25th Int. Conf. Field Program. Logic Appl., Sep. 2015,
pp. 1–8.

[12] S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteRT: An ef�cient FPGA
NoC for real-time applications,” inProc. Int. Conf. Field Program.
Technol., Dec. 2017, pp. 64–71.

[13] T. Picornell, J. Flich, C. Hernández, and J. Duato, “DCFNoC: A delayed
con�ict-free time division multiplexing network on chip,” inProc. 56th
Annu. Design Autom. Conf., 2019, pp. 1–6.

[14] M. G. Alonso, J. Flich, M. Turki, and D. Bertozzi, “A low-latency and
�exible TDM NoC for strong isolation in security-critical systems,” in
Proc. IEEE 13th Int. Symp. Embedded Multicore Many Core Systems-
on-Chip (MCSoC), 2019, pp. 149–156.

[15] J. Diemer, J. Rox, M. Negrean, S. Stein, and R. Ernst, “Real-time com-
munication analysis for networks with two-stage arbitration,” inProc.
IEEE 9th ACM Int. Conf. Embedded Softw., 2011, pp. 243–252.

[16] E. A. Rambo and R. Ernst, “Worst-case communication time analysis of
networks-on-chip with shared virtual channels,” inProc. IEEE Design
Autom. Test Europe Conf. Exhibit., 2015, pp. 537–542.

[17] B. D. De Dinechin, D. Van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Proc. IEEE Design Autom. Test Europe Conf. Exhibit., 2014, pp. 1–6.

[18] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,”IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep./Oct. 2007.

[19] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” inProc. 2nd ACM/IEEE Int. Symp.
Netw. Chip, 2008, pp. 161–170.

[20] M. Liu, M. Becker, M. Behnam, and T. Nolte, “Tighter time analysis
for real-time traf�c in on-chip networks with shared priorities,” inProc.
10th IEEE/ACM Int. Symp. Netw. Chip, 2016, pp. 1–8.

[21] B. Nikolić and S. M. Petters, “EDF as an arbitration policy for
wormhole-switched priority-preemptive nocs-myth or fact?” inProc. Int.
Conf. Embedded Softw., Oct 2014, pp. 1–10.

[22] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC protocol for
mixed criticality systems,” inProc. IEEE Real Time Syst. Symp., 2014,
pp. 184–195.

[23] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip,” inProc.
IEEE 27th Euromicro Conf. Real Time Syst., 2015, pp. 1–84.

[24] B. Nikolic, R. Hofmann, and R. Ernst, “Slot-based transmission protocol
for real-time NoCs-SBT-NoC,” inProc. 31st Euromicro Conf. Real Time
Syst., 2019, pp. 1–22.

[25] F. Giroudot and A. Mifdaoui, “Buffer-aware worst-case timing analysis
of wormhole NoCs using network calculus,” inProc. IEEE Real Time
Embedded Technol. Appl. Symp., 2018, pp. 37–48.

[26] F. Giroudot and A. Mifdaoui, “Tightness and computation assessment of
worst-case delay bounds in wormhole networks-on-chip,” inProc. 27th
Int. Conf. Real Time Netw. Syst., 2019, pp. 19–29.

[27] N. Kapre and J. Gray, “Hoplite: A de�ection-routed directional torus
NoC for FPGAS,”ACM Trans. Recon�g. Technol. Syst., vol. 10, no. 2,
pp. 1–24, 2017.

[28] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “HopliteBuf: FPGA
NoCs with provably stall-free FIFOs,” inProc. ACM/SIGDA Int. Symp.
Field Program. Gate Arrays (FPGA), 2019, pp. 222–231.

[29] S. Wasly, R. Pellizzoni, and N. Kapre. (2017).Worst Case Latency
Analysis for Hoplite FPGA-Based NoC. UWSpace. [Online]. Available:
http://hdl.handle.net/10012/12600

[30] A. Monemi, J. Tang, M. Palesi, and M. N. Marsono, “ProNoC: A low
latency network-on-chip based many-core system-on-chip prototyping
platform,” Microprocessors Microsyst., vol. 54, pp. 60–74, Oct. 2017.

[31] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining conven-
tional wisdom for designing Nocs in the context of FPGAs,” inProc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays (FPGA), 2012,
pp. 37–46.

[32] S. Tobuschat, “Predictable and runtime-adaptable network-on-chip for
mixed-critical real-time systems,” Ph.D. dissertation, Faculty Elect.
Eng. Inf. Technol. Phys., Techn. Univ. Braunschweig, Braunschweig,
Germany, 2019.

[33] Z. Shi and A. Burns, “Real-time communication analysis with a priority
share policy in on-chip networks,” inProc. IEEE 21st Euromicro Conf.
Real Time Syst., 2009, pp. 3–12.

[34] Y. Ribot González and G. Nelissen, “Hoplitert*: Real-time NoC for
FPGA,” CISTER Res. Centre, ISEP, Polytechnic Inst. Porto, Porto,
Portugal, Rep. CISTER-TR-200702, 2020.

[35] Z. Shi and A. Burns, “Improvement of schedulability analysis with a
priority share policy in on-chip networks,” inProc. 17th Int. Conf. Real
Time Netw. Syst. (RTNS), 2009, pp. 75–84.

[36] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real Time Syst., vol. 30, pp. 129–154, May 2005.

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on November 04,2020 at 14:39:32 UTC from IEEE Xplore. Restrictions apply.

