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Abstract 

Hybrid programs combine digital control with differential equations, and naturally appear in a wide range of 
application domains, from biology and control theory to real-time software engineering. The entanglement of 
discrete and continuous behaviour inherent to such programs goes beyond the established computer science 
foundations, producing challenges related to e.g. infinite iteration and combination of hybrid behaviour with other 
effects. A systematic treatment of hybridness as a dedicated computational effect has emerged recently. In 
particular, a generic idealized functional language HybCore with a sound and adequate operational semantics has 
been proposed. The latter semantics however did not provide hints to implementing HybCore as a runnable 
language, suitable for hybrid system simulation (e.g. the semantics features rules with uncountably many 
premises). We introduce an imperative counterpart of HybCore, whose semantics is simpler and runnable, and yet 
intimately related with the semantics of HybCore at the level of hybrid monads. We then establish a corresponding 
soundness and adequacy theorem. To attest that the resulting semantics can serve as a firm basis for the 
implementation of typical tools of programming oriented to the hybrid domain, we present a web-based prototype 
implementation to evaluate and inspect hybrid programs, in the spirit of GHCi for Haskell and UTop for OCaml. The 
major asset of our implementation is that it formally follows the operational semantic rules. 
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Abstract. Hybrid programs combine digital control with differential
equations, and naturally appear in a wide range of application domains,
from biology and control theory to real-time software engineering. The
entanglement of discrete and continuous behaviour inherent to such
programs goes beyond the established computer science foundations,
producing challenges related to e.g. infinite iteration and combination of
hybrid behaviour with other effects. A systematic treatment of hybridness
as a dedicated computational effect has emerged recently. In particular,
a generic idealized functional language HybCore with a sound and
adequate operational semantics has been proposed. The latter semantics
however did not provide hints to implementing HybCore as a runnable
language, suitable for hybrid system simulation (e.g. the semantics features
rules with uncountably many premises). We introduce an imperative
counterpart of HybCore, whose semantics is simpler and runnable, and
yet intimately related with the semantics of HybCore at the level of
hybrid monads. We then establish a corresponding soundness and adequacy
theorem. To attest that the resulting semantics can serve as a firm basis
for the implementation of typical tools of programming oriented to the
hybrid domain, we present a web-based prototype implementation to
evaluate and inspect hybrid programs, in the spirit of GHCi for Haskell

and UTop for OCaml. The major asset of our implementation is that it
formally follows the operational semantic rules.

1 Introduction

The core idea of hybrid programming. Hybrid programming is a rapidly
emerging computational paradigm [26,29] that aims at using principles and
techniques from programming theory (e.g. compositionality [12,26], Hoare cal-
culi [29,34], theory of iteration [2,8]) to provide formal foundations for developing
computational systems that interact with physical processes. Cruise controllers
are a typical example of this pattern; a very simple case is given by the hybrid
program below.

while true do {

if v ↕ 10 then ♣v✶ ✏ 1 for 1q else ♣v✶ ✏ ✁1 for 1q

}

(cruise controller)



In a nutshell, the program specifies a digital controller that periodically measures
and regulates a vehicle’s velocity (v): if the latter is less or equal than 10 the
controller accelerates during 1 time unit, as dictated by the program statement
v✶ ✏ 1 for 1 (v✶ ✏ 1 is a differential equation representing the velocity’s rate
of change over time. The value 1 on the right-hand side of for is the duration
during which the program statement runs). Otherwise, it decelerates during the
same amount of time ♣v✶ ✏ ✁1 for 1q. Figure 1 shows the output respective to
this hybrid program for an initial velocity of 5.

Fig. 1: Vehicle’s velocity

Note that in contrast to stan-
dard programming, the cruise con-
troller involves not only classi-
cal constructs (while-loops and
conditional statements) but also
differential ones (which are used
for describing physical processes).
This cross-disciplinary combina-
tion is the core feature of hybrid
programming and has a notably
wide range of application domains
(see [29,30]). However, it also hin-
ders the use of classical techniques of programming, and thus calls for a principled
extension of programming theory to the hybrid setting.

As is already apparent from the (cruise controller) example, we stick to an
imperative programming style, in particular, in order to keep in touch with the
established denotational models of physical time and computation. A popular
alternative to this for modelling real-time and hybrid systems is to use a declarative
programming style, which is done e.g. in real-time Maude [27] or Modelica [10].
A well-known benefit of declarative programming is that programs are very easy
to write, however on the flip side, it is considerably more difficult to define what
they exactly mean.

Motivation and related work. Most of the previous research on formal
hybrid system modelling has been inspired by automata theory and Kleene
algebra (as the corresponding algebraic counterpart). These approaches led
to the well-known notion of hybrid automaton [17] and Kleene algebra based
languages for hybrid systems [28,18,19]. From the purely semantic perspective,
these formalizations are rather close and share such characteristic features as
nondeterminism and what can be called non-refined divergence. The former is
standardly justified by the focus on formal verification of safety-critical systems: in
such contexts overabstraction is usually desirable and useful. However, coalescing
purely hybrid behaviour with nondeterminism detaches semantic models from
their prototypes as they exist in the wild. This brings up several issues. Most
obviously, a nondeterministic semantics, especially not given in an operational
form, cannot directly serve as a basis for languages and tools for hybrid system
testing and simulation. Moreover, models with nondeterminism baked in do not
provide a clear indication of how to combine hybrid behaviour with effects other
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than nondeterminism (e.g. probability), or to combine it with nondeterminism in
a different way (van Glabbeek’s spectrum [36] gives an idea about the diversity
of potentially arising options). Finally, the Kleene algebra paradigm strongly
suggests a relational semantics for programs, with the underlying relations
connecting a state on which the program is run with the states that the program
can reach. As previously indicated by Höfner and Möller [18], this view is too
coarse-grained and contrasts to the trajectory-based one where a program is
associated with a trajectory of states (recall Figure 1). The trajectory-based
approach provides an appropriate abstraction for such aspects as notions of
convergence, periodic orbits, and duration-based predicates [5]. This potentially
enables analysis of properties such as how fast our (cruise controller) example
reaches the target velocity or for how long it exceeds it.

The issue of non-refined divergence mentioned earlier arises from the Kleene
algebra law p ; 0 ✏ 0 in conjunction with Fischer-Ladner’s encoding of while-loops
while b do { p } as ♣b ; pq✝;✥b. This creates a havoc with all divergent programs
while true do { p } as they become identified with divergence 0, thus making
the above example of a (cruise controller) meaningless. This issue is extensively
discussed in Höfner and Möller’s work [18] on a nondeterministic algebra of
trajectories, which tackles the problem by disabling the law p ; 0 ✏ 0 and by
introducing a special operator for infinite iteration that inherently relies on
nondeterminism. This iteration operator inflates trajectories at so-called ‘Zeno
points’ with arbitrary values, which in our case would entail e.g. the program

x :✏ 1 ; while true do { wait x ; x :✏ x④2 } (zeno)

to output at time instant 2 all possible values in the valuation space (the expression
wait t represents a wait call of t time units). More details about Zeno points
can be consulted in [18,14].

In previous work [12,14], we pursued a purely hybrid semantics via a simple
deterministic functional language HybCore, with while-loops for which we used
Elgot’s notion of iteration [8] as the underlying semantic structure. That resulted
in a semantics of finite and infinite iteration, corresponding to a refined view
of divergence. Specifically, we developed an operational semantics and also a
denotational counterpart for HybCore. An important problem of that semantics,
however, is that it involves infinitely many premisses and requires calculating
total duration of programs, which precludes using such semantics directly in
implementations. Both the above examples (cruise controller) and (zeno) are
affected by this issue. In the present paper we propose an imperative language
with a denotational semantics similar to HybCore’s one, but now provide a
clear recipe for executing the semantics in a constructive manner.

Overview and contributions. Building on our previous work [14], we devise
operational and denotational semantics suitable for implementation purposes, and
provide a soundness and adequacy theorem relating both these styles of semantics.
Results of this kind are well-established yardsticks in the programming language
theory [37], and beneficial from a practical perspective. For example, small-
step operational semantics naturally guides the implementation of compilers for
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programming languages, whilst denotational semantics is more abstract, syntax-
independent, and guides the study of program equivalence, of the underlying
computational paradigm, and its combination with other computational effects.

As mentioned before, in our previous work [14] we introduced a simple
functional hybrid language HybCore with operational and denotational monad-
based semantics. Here, we work with a similar imperative while-language, whose
semantics is given in terms of a global state space of trajectories over ❘n, which
is a commonly used carrier when working with solutions of systems of differential
equations. A key principle we have taken as a basis for our new semantics is the
capacity to determine behaviours of a program p by being able to examine only
some subterms of it. In order to illustrate this aspect, first note that our semantics
does not reduce program terms p and initial states σ (corresponding to valuation
functions σ : X Ñ ❘ on program variables X ) to states σ✶, as usual in classical
programming. Instead it reduces triples p , σ , t of programs p, initial states σ
and time instants t to a state σ✶; such a reduction can be read as “given σ as
the initial state, program p produces a state σ✶ at time instant t”. Then, the
reduction process of p , σ , t to a state only examines fragments of p or unfolds
it when strictly necessary, depending of the time instant t. For example, the
reduction of the (cruise controller) unfolds the underlying loop only twice for the
time instant 1�1④2 (the time instant 1�1④2 occurred in the second iteration of the
loop). This is directly reflected in our prototype implementation of an interactive
evaluator of hybrid programs Lince. It is available online and comes with a series
of examples for the reader to explore (http://arcatools.org/lince). The plot
in Figure 1 was automatically obtained from Lince, by calling on the previously
described reduction process for a predetermined sequence of time instants t.

For the denotational model, we build on our previous work [12,14] where
hybrid programs are interpreted via a suitable monad H, called the hybrid monad
and capturing the computational effect of hybridness, following the seminal
approach of Moggi [24,25]. Our present semantics is more lightweight and is
naturally couched in terms of another monad HS , parametrized by a set S. In
our case, as mentioned above, S is the set of trajectories over ❘n where n is the
number of available program variables X . The latter monad is in fact parametrized
in a formal sense [35] and comes out as an instance of a recently emerged generic
construction [7]. A remarkable salient feature of that construction is that it can
be instantiated in a constructive setting (without using any choice principles)
– although we do not touch upon this aspect here, in our view this reinforces
the fundamental nature of our semantics. Among various benefits of HS over H,
the former monad enjoys a construction of an iteration operator (in the sense of
Elgot [8]) as a least fixpoint, calculated as a limit of an ω-chain of approximations,
while for H the construction of the iteration operator is rather intricate and
no similar characterization is available. A natural question that arises is: how
are H and HS related? We do answer it by providing an instructive connection,
which sheds light on the construction of H, by explicitly identifying semantic
ingredients which have to be added to HS to obtain H. Additionally, this results
in “backward compatibility” with our previous work.
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Document structure. After short preliminaries (Section 2), in Section 3 we
introduce our while-language and its operational semantics. In Sections 4 and 5,
we develop the denotational model for our language and connect it formally to the
existing hybrid monad [12,14]. In Section 6, we prove a soundness and adequacy
result for our operational semantics w.r.t. the developed model. Section 7 describes
Lince’s architecture. Finally, Section 8 concludes and briefly discusses future
work. Omitted proofs and examples are found in the extended version of the
current paper [15].

2 Preliminaries

We assume familiarity with category theory [1]. By ❘, ❘� and ❘̄� we respectively
denote the sets of reals, non-negative reals, and extended non-negative reals
(i.e.❘� extended with the infinity value ✽). Let r0, ❘̄�M denote the set of downsets
of ❘̄� having the form r0, ds (d P ❘�) or the form r0, dq (d P ❘̄�). We call the
elements of the dependent sum

∑

IPr0,❘̄�MX
I trajectories (over X). By r0,❘�s,

r0,❘�q and r0, ❘̄�q we denote the following corresponding subsets of r0, ❘̄�M:
{r0, ds ⑤ d P ❘�}, {r0, dq ⑤ d P ❘�} and {r0, dq ⑤ d P ❘̄�}. By X ❩ Y we denote the
disjoint union, which is the categorical coproduct in the category of sets with
the corresponding left and right injections inl : X Ñ X ❩ Y , inr : Y Ñ X ❩ Y . To
reduce clutter, we often use plain union X ❨ Y in place of X ❩ Y if X and Y
are disjoint by construction.

By a ⊳ b ⊲ c we denote the case distinction construct: a if b is true and c

otherwise. By ! we denote the empty function, i.e. a function with the empty
domain. For the sake of succinctness, we use the notation et for the function
application e♣tq with real-value t.

3 An imperative hybrid while-language and its semantics

This section introduces the syntax and operational semantics of our language.
We first fix a stock of n-variables X ✏ {x1, . . . , xn} over which we build atomic
programs, according to the grammar

At♣X q ◗ x :✏ t ⑤ x✶
1
✏ t1, . . . , x

✶
n
✏ tn for t

LTerm♣X q ◗ r ⑤ r ☎ x ⑤ t� s

where x P X , r P ❘, ti, t, s P LTerm♣X q. An atomic program is thus either a
classical assignment x :✏ t or a differential statement x✶

1
✏ t1, . . . , x

✶
n
✏ tn for t.

The latter reads as “run the system of differential equations x✶
1
✏ t1, . . . , x

✶
n
✏ tn

for t time units”. We then define the while-language via the grammar

Prog♣X q ◗ a ⑤ p ; q ⑤ if b then p else q ⑤ while b do { p }

where p, q P Prog♣X q, a P At♣X q and b is an element of the free Boolean algebra
generated by the terms t ↕ s and t ➙ s. The expression wait t (from the
previous section) is encoded as the differential statement x✶

1
✏ 0, . . . , x✶

n
✏ 0fort.
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Remark 1. The systems of differential equations that our language allows are
always linear. This is not to say that we could not consider more expressive
systems; in fact we could straightfowardly extend the language in this direction,
for its semantics (presented below) is not impacted by specific choices of solvable
systems of differential equations. But here we do not focus on such choices regard-
ing the expressivity of continuous dynamics and concentrate on a core hybrid
semantics instead on which to study the fundamentals of hybrid programming.

In the sequel we abbreviate differential statements x✶
1
✏ t1, . . . , x

✶
n
✏ tnfort to

the expression x̄✶ ✏ t̄ for t, where x̄✶ and t̄ abbreviate the corresponding vectors
of variables x✶

1
. . . x✶

n
and linear-combination terms t1 . . . tn. We call functions of

type σ : X Ñ ❘ environments; they map variables to the respective valuations.
We use the notation σ▽rv̄④x̄s to denote the environment that maps each xi in
x̄ to vi in v̄ and the rest of variables in the same way as σ. Finally, we denote
by φx̄

✶✏t̄

σ : r0,✽q Ñ ❘
n the solution of a system of differential equations x̄✶ ✏ t̄

with σ determining the initial condition. When clear from context, we omit the
superscript in φx̄✏t̄

σ . For a linear-combination term t the expression tσ denotes
the corresponding interpretation according to σ and analogously for bσ where b
is a Boolean expression.

We now introduce a small-step operational semantics for our language. In-
tuitively, the semantics establishes a set of rules for reducing a triple 〈program
statement, environment, time instant〉 to an environment, via a finite sequence of
reduction steps. The rules are presented in Figure 2. The terminal configuration
〈skip, σ, t〉 represents a successful end of a computation, which can then be fed
into another computation (via rule (seq-skipÑ)). Contrastingly, 〈stop, σ, t〉 is a
terminating configuration that inhibits the execution of subsequent computations.
The latter is reflected in rules (diff-stopÑ) and (seq-stopÑ) which entail that,
depending on the chosen time instant, we do not need to evaluate the whole
program, but merely a part of it – consequently, infinite while-loops need not
yield infinite reduction sequences (as explained in Remark 2). Note that time
t is consumed when applying the rules (diff-stopÑ) and (diff-seqÑ) in corre-
spondence to the duration of the differential statement at hand. The rules (seq)
and (seq-skipÑ) correspond to the standard rules of operational semantics for
while languages over an imperative store [37].

Remark 2. Putatively infinite while-loops do not necessarily yield infinite reduc-
tion steps. Take for example the while-loop below whose iterations have always
duration 1.

x :✏ 0 ; while true do { x :✏ x� 1 ; wait 1 } (1)

It yields a finite reduction sequence for the time instant 1④2, as shown below:

x :✏ 0 ; while true do { x :✏ x� 1 ; wait 1 } , σ , 1④2 Ñ

{by the rules (asgÑ) and (seq-skipÑ)}

while true do { x :✏ x� 1 ; wait 1 } , σ▽r0④xs , 1④2 Ñ

{by the rule (wh-trueÑ)}
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(asgÑ) x :✏ t , σ , t Ñ skip , σ▽rtσ④xs , t

(diff-stopÑ) x̄
✶ ✏ ū for t , σ , t Ñ stop , σ▽rφσ♣tq④x̄s , 0 ♣if t ➔ tσq

(diff-skipÑ) x̄
✶ ✏ ū for t , σ , t Ñ skip , σ▽rφσ♣tσq④x̄s , t✁ ♣tσq ♣if t ➙ tσq

(if-trueÑ) if b then p else q , σ , t Ñ p , σ , t ♣if bσ ✏ ❏q

(if-falseÑ) if b then p else q , σ , t Ñ q , σ , t ♣if bσ ✏ ❑q

(wh-trueÑ) while b do { p } , σ , t Ñ p ; while b do { p } , σ , t ♣if bσ ✏ ❏q

(wh-falseÑ) while b do { p } , σ , t Ñ skip , σ , t ♣if bσ ✏ ❑q

(seq-stopÑ)
p , σ , t Ñ stop , σ✶ , t✶

p ; q , σ , t Ñ stop , σ✶ , t✶
(seq-skipÑ)

p , σ , t Ñ skip , σ✶ , t✶

p ; q , σ , t Ñ q , σ✶ , t✶

(seqÑ)
p , σ , t Ñ p✶ , σ✶ , t✶

p ; q , σ , t Ñ p✶; q , σ✶ , t✶
♣if p

✶ ✘ stop and p
✶ ✘ skipq

Fig. 2: Small-step Operational Semantics

x :✏ x� 1 ; wait 1 ; while true do { x :✏ x� 1 ; wait 1 } , σ▽r0④xs , 1④2 Ñ

{by the rules (asgÑ) and (seq-skipÑ)}

wait 1 ; while true do { x :✏ x� 1 ; wait 1 } , σ▽r0� 1④xs , 1④2 Ñ

{by the rules (diff-stopÑ) and (seq-stopÑ)}

stop , σ▽r0� 1④xs , 0

The gist is that to evaluate program (1) at time instant 1④2, one only needs to un-
fold the underlying loop until surpassing 1④2 in terms of execution time. Note that
if the wait statement is removed from the program then the reduction sequence
would not terminate, intuitively because all iterations would be instantaneous
and thus the total execution time of the program would never reach 1④2.

The following theorem entails that our semantics is deterministic, which is
instrumental for our implementation.

Theorem 1. For every program p, environment σ, and time instant t there is
at most one applicable reduction rule.

Let Ñ✍ be the transitive closure of the reduction relation Ñ that was
previously presented.

Corollary 1. For every program term p, environments σ, σ✶, σ✷, time instants
t, t✶, t✷, and termination flags s, s✶ P {skip, stop}, if p , σ , t Ñ✍ s, σ✶, t✶ and p ,

σ , t Ñ✍ s✶ , σ✷ , t✷, then the equations s ✏ s✶, σ✶ ✏ σ✷ and t✶ ✏ t✷ must hold.

Proof. Follows by induction on the number of reduction steps and Theorem1. ❬❭

As alluded above, the operational semantics treats time as a resource. This is
formalised below.
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Proposition 1. For all program terms p and q, environments σ and σ✶, and
time instants t, t✶ and s, if p , σ , t Ñ q , σ✶ , t✶ then p , σ , t � s Ñ q , σ✶ ,

t✶ � s; and if p , σ , t Ñ skip , σ✶ , t✶ then p , σ , t� s Ñ skip , σ✶ , t✶ � s.

4 Towards Denotational Semantics: The Hybrid Monad

A mainstream subsuming paradigm in denotational semantics is due to Moggi
[24,25], who proposed to identify a computational effect of interest as a monad,
around which the denotational semantics is built using standard generic mecha-
nisms, prominently provided by category theory. In this section we recall necessary
notions and results, motivated by this approach, to prepare ground for our main
constructions in the next section.

Definition 1 (Monad). A monad T (on the category of sets and functions) is
given by a triple ♣T, η, ♣--q✍q, consisting of an endomap T over the class of all
sets, together with a set-indexed class of maps ηX : X Ñ TX and a so-called
Kleisli lifting sending each f : X Ñ TY to f✍ : TX Ñ TY and obeying monad
laws: η✍ ✏ id, f✍ ☎ η ✏ f , ♣f✍ ☎ gq✍ ✏ f✍ ☎ g✍ (it follows from this definition that T
extends to a functor and η to a natural transformation).

A monad morphism θ : T Ñ S from ♣T, ηT, ♣--q✍Tq to ♣S, ηS, ♣--q✍Sq is a natural
transformation θ : T Ñ S such that θ ☎ ηT ✏ ηS and θ ☎ f✍T ✏ ♣θ ☎ fq✍S ☎ θ.

We will continue to use bold capitals (e.g. T) for monads over the corresponding
endofunctors written as capital Romans (e.g. T ).

In order to interpret while-loops one needs additional structure on the monad.

Definition 2 (Elgot Monad). A monad T is called Elgot if it is equipped with
an iteration operator ♣--q✿ that sends each f : X Ñ T ♣Y ❩Xq to f ✿ : X Ñ TY in
such a way that certain established axioms of iteration are satisfied [2,16].

Monad morphisms between Elgot monads are additionally required to preserve
iteration: θ ☎ f ✿T ✏ ♣θ ☎ fq✿S for θ : T Ñ S, f : X Ñ T ♣Y ❩Xq.

For a monad T, a map f : X Ñ TY , called a Kleisli map, is roughly to be
regarded as a semantics of a program p, with X as the semantics of the input,
and Y as the semantics of the output. For example, with T being the maybe
monad ♣--q ❩ {❑}, we obtain semantics of programs as partial functions. Let us
record this example in more detail for further reference.

Example 1 (Maybe Monad M). The maybe monad is determined by the following
data: MX ✏ X ❩ {❑}, the unit is the left injection inl : X Ñ X ❩ {❑} and given
f : X Ñ Y ❩ {❑}, f✍ is equal to the copairing rf, inrs : X ❩ {❑} Ñ Y ❩ {❑}.

It follows by general considerations (enrichment of the category of Kleisli
maps over complete partial orders) that M is an Elgot monad with the following
iteration operator ♣--q✻: given f : X Ñ ♣Y ❩Xq ❩ {❑}, and x0 P X, let x0, x1, . . .
be the longest (finite or infinite) sequence over X constructed inductively in such
a way that f♣xiq ✏ inl inr xi�1. Now, f

✻♣x0q ✏ inr❑ if the sequence is infinite or
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f♣xiq ✏ inr❑ for some i, and f ✻♣x0q ✏ inl y if for the last element of the sequence
xn, which must exist, f♣xnq ✏ inl inl y.

Other examples of Elgot monad can be consulted e.g. in [16].

The computational effect of hybridness can also be captured by a monad, called
hybrid monad [12,14], which we recall next (in a slightly different but equivalent
form). To that end, we also need to recall Minkowski addition for subsets of the
set ❘̄� of extended non-negative reals (see Section 2): A�B ✏ {a� b ⑤ a P A,
b P B}, e.g. ra, bs � rc, ds ✏ ra� c, b� ds and ra, bs � rc, dq ✏ ra� c, b� dq.

Definition 3 (Hybrid Monad H). The hybrid monad H is defined as follows.

– HX ✏
∑

IPr0,❘�s
XI❩

∑

IPr0,❘̄�MX
I , i.e. it is a set of trajectories valued on X

and with the domain downclosed. For any p ✏ inj〈I, e〉 P HX with inj P {inl,
inr}, let us use the notation pd ✏ I, pe ✏ e, the former being the duration of
the trajectory and the latter the trajectory itself. Let also ε ✏ 〈∅, !〉.

– η♣xq ✏ inl〈r0, 0s, λt. x〉, i.e. η♣xq is a trajectory of duration 0 that returns x.
– given f : X Ñ HY , we define f✍ : HX Ñ HY via the following clauses:

f✍♣inl〈I, e〉q ✏ inj〈I � J, λt. ♣f♣etqq0
e ⊳ t ➔ d ⊲ ♣f♣edqqt✁d

e
〉

if I ✶ ✏ I ✏ r0, ds for some d, f♣edq ✏ inj 〈J, e✶〉

f✍♣inl〈I, e〉q ✏ inr〈I ✶, λt. ♣f♣etqq0
e
〉 if I ✶ ✘ I

f✍♣inr〈I, e〉q ✏ inr〈I ✶, λt. ♣f♣etqq0
e
〉

where I ✶ ✏
⋃
{

r0, ts ❸ I ⑤ ❅s P r0, ts. f♣esq ✘ inr ε
}

and inj P {inl, inr}.

The definition of the hybrid monad H is somewhat intricate, so let us complement
it with some explanations (details and further intuitions about the hybrid monad
can also be consulted in [12]). The domain HX constitutes three types of
trajectories representing different kinds of hybrid computation:

– (closed) convergent : inl〈r0, ds, e〉 P HX (e.g. instant termination η♣xq);
– open divergent : inr〈r0, dq, e〉 P HX (e.g. instant divergence inr ε or a trajectory
r0,✽q Ñ X which represents a computation that runs ad infinitum);

– closed divergent : inr〈r0, ds, e〉 P HX (representing computations that start to
diverge precisely after the time instant d).

The Kleisli lifting f✍ works as follows: for a given trajectory inj〈I, e〉, we first
calculate the largest interval I ✶ ❸ I on which the trajectory λt P I ✶.f♣etq does
not instantly diverge (i.e. f♣etq ✘ inr ε) throughout, hence I ✶ is either r0, d✶s or
r0, d✶q for some d✶. Now, the first clause in the definition of f✍ corresponds to the
successful composition scenario: the argument trajectory 〈I, e〉 is convergent, and
composing f with e as described in the definition of I ✶ does not yield divergence
all over I. In that case, we essentially concatenate 〈I, e〉 with f♣edq, the latter
being the trajectory computed by f at the last point of e. The remaining two
clauses correspond to various flavours of divergence, including divergence of the
input (inr〈I, e〉) and divergences occurring along f ☎ e. Incidentally, this explains
how closed divergent trajectories may arise: if I ✶ ✏ r0, d✶s and d✶ is properly
smaller than d, then we diverge precisely after d✶, which is possible e.g. if the
program behind f continuously checks a condition which did not fail up until d✶.
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5 Deconstructing the Hybrid Monad

As mentioned in the introduction, in [14] we used H for giving semantics to a
functional language HybCore whose programs are interpreted as morphisms of
type X Ñ HY . Here, we are dealing with an imperative language, which from
a semantic point of view amounts to fixing a type of states S, shared between
all programs; the semantics of a program is thus restricted to morphisms of
type S Ñ HS. As explained next, this allows us to make do with a simpler
monad HS , globally parametrized by S. The new monad HS has the property
that HSS is naturally isomorphic to HS. Apart from (relative to H) simplicity,
the new monad enjoys further benefits, specifically HS is mathematically a better
behaved structure, e.g. in contrast to H, Elgot iteration on HS is constructed
as a least fixed point. Factoring the denotational semantics through HS thus
allows us to bridge the gap to the operational semantics given in Section 3, and
faciliates the soundness and adequacy proof in the forthcoming Section 6.

In order to define HS , it is convenient to take a slightly broader perspective.
We will also need to make a detour through the topic of ordered monoid modules
with certain completeness properties so that we can characterise iteration on HS

as a least fixed point.

Definition 4 (Monoid Module, Generalized Writer Monad [14]). Given
a (not necessarily commutative) monoid ♣▼,�, 0q, a monoid module is a set ❊
equipped with a map ⊲ : ▼✂❊Ñ ❊ (monoid action), subject to the laws 0 ⊲ e ✏ e,
♣m� nq ⊲ e ✏ m ⊲ ♣n ⊲ eq.

Every monoid-module pair ♣▼,❊q induces a generalized writer monad T ✏
♣T, η, ♣--q✍q with T ✏ ▼✂ ♣--q ❨ ❊, ηX♣xq ✏ 〈0, x〉, and

f✍♣m,xq ✏ ♣m� n, yq where m P ▼, x P X, f♣xq ✏ 〈n, y〉 P ▼✂ Y

f✍♣m,xq ✏ m ⊲ e where m P ▼, x P X, f♣xq ✏ e P ❊

f✍♣eq ✏ e where e P ❊

This generalizes the writer monad ♣❊ ✏ ∅q and the exception monad ♣▼ ✏ 1q.

Example 2. A simple motivating example of a monoid-module pair ♣▼,❊q is the
pair ♣❘�, ❘̄�q where the monoid operation is addition with 0 as the unit and the
monoid action is also addition.

More specifically, we are interested in ordered monoids and (conservatively)
complete monoid modules. These are defined as follows.

Definition 5 (Ordered Monoids, (Conservatively) Complete Monoid
Modules [7]). We call a monoid ♣▼, 0,�q an ordered monoid if it is equipped
with a partial order ↕, such that 0 is the least element of this order and � is
right-monotone (but not necessarily left-monotone).

An ordered ▼-module w.r.t. an ordered monoid ♣▼,�, 0,↕q, is an ▼-module
♣❊, ⊲ q together with a partial order ⊑ and a least element ❑, such that ⊲ is
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monotone on the right and ♣✁ ⊲ ❑q is monotone, i.e.

❑ ⊑ x

x ⊑ y

a ⊲ x ⊑ a ⊲ y

a ↕ b

a ⊲ ❑ ⊑ b ⊲ ❑

We call the last property restricted left monotonicity.
An ordered ▼-module is (ω-)complete if for every ω-chain s1 ⊑ s2 ⊑ . . . on ❊

there is a least upper bound
⊔

i si and ⊲ is continuous on the right, i.e.

❅i. si ⊑
⊔

i si

❅i. si ⊑ x
⊔

i si ⊑ x a ⊲
⊔

i si ⊑
⊔

i a ⊲ si

(the law
⊔

i a ⊲ si ⊑ a ⊲
⊔

i si is derivable). Such an ▼-module is conservatively
complete if additionally for every ω-chain a1 ⊑ a2 ⊑ . . . in ▼, such that the least
upper bound

∨

i ai exists,
(
∨

i ai
)

⊲ ❑ ✏
⊔

i ai ⊲ ❑.
A homomorphism h : ❊Ñ ❋ of (conservatively) complete monoid ▼-modules is

required to be monotone and structure-preserving in the following sense: h♣❑q ✏ ❑,
h♣a ⊲ xq ✏ a ⊲ h♣xq, h♣

⊔

i xiq ✏
⊔

i h♣xiq.

The completeness requirement for ▼-modules has a standard motivation coming
from domain theory, where ⊑ is regarded as an information order and complete-
ness is needed to ensure that the relevant semantic domain can accommodate
infinite behaviours. The conservativity requirement additionally ensures that the
least upper bounds, which exist in ▼ agree with those in ❊. Our main example is
as follows (we will use it for building HS and its iteration operator).

Definition 6 (Monoid Module of Trajectories). The ordered monoid of
finite open trajectories

(

TrjS , Û, 〈∅, !〉,↕
)

over a given set S, is defined as follows:
TrjS ✏

∑

IPr0,❘�q
SI , the unit is the empty trajectory ε ✏ 〈∅, !〉; summation is

concatenation of trajectories Û, defined as follows:

〈r0, d1q, e1〉Û〈r0, d2q, e2〉 ✏ 〈r0, d1 � d2q, λt. e
t
1 ⊳ t ➔ d1 ⊲ e

t✁d1

2
〉.

The relation ↕ is defined as follows: 〈r0, d1q, e1〉 ↕ 〈r0, d2q, e2〉 if d1 ↕ d2 and
et
1
✏ et

2
for every t P r0, d1q. We can additionally consider both sets

∑

IPr0,❘̄�q
SI

and
∑

IPr0,❘̄�M S
I as TrjS-modules, by defining the monoid action ⊲ also as

concatenation of trajectories and by equipping these sets with the order ⊑:
〈I1, e1〉 ⊑ 〈I2, e2〉 if I1 ❸ I2 and et

1
✏ et

2
for all t P I1.

Consider the following functors:

H ✶
SX ✏

∑

IPr0,❘�q
SI ✂X ❨

∑

IPr0,❘̄�q
SI (2)

HSX ✏
∑

IPr0,❘�q
SI ✂X ❨

∑

IPr0,❘̄�M
SI (3)

Both of them extend to monads H✶
S and HS as they are instances of Definition 4.

Moreover, it is laborious but straightforward to prove that both H ✶
SX and HSX

are conservatively complete TrjS-modules on X [7], i.e. conservatively complete
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TrjS-modules, equipped with distinguished maps η : X Ñ H ✶
SX, η : X Ñ HSX.

In each case η sends x P X to 〈ε, x〉. The partial order on H ✶
SX (which we will

use for obtaining the least upper bound of a certain sequence of approximations)
is given by the clauses below and relies on the previous order ↕ on trajectories:

〈〈I, e〉, x〉 ⊑ 〈〈I, e〉, x〉

〈I, e〉 ↕ 〈I ✶, e✶〉

〈I, e〉 ⊑ 〈〈I ✶, e✶〉, x〉

〈I, e〉 ↕ 〈I ✶, e✶〉

〈I, e〉 ⊑ 〈I ✶, e✶〉

The monad given by (2) admits a sharp characterization, which is an instance of
a general result [7]. In more detail,

Proposition 2. The pair ♣H ✶
SX, ηq is a free conservatively complete TrjS-module

on X, i.e. for every conservatively complete TrjS-module ❊ and a map f : X Ñ ❊,

there is unique homomorphism f̂ : H ✶
SX Ñ ❊ such that f̂ ☎ η ✏ f .

Intuitively, Proposition 2 ensures that H ✶
SX is a least conservatively complete

TrjS-module generated by X. This characterization entails a construction of an
iteration operator on H

✶
S as a least fixpoint. This, in fact, also transfers to HS

(as detailed in the proof of the following theorem).

Theorem 2. Both H
✶
S and HS are Elgot monads, for which f ✿ is computed as

a least fixpoint of ω-continuous endomaps g ÞÑ rη, gs✍ ☎ f over the function spaces
X Ñ H ✶

SY and X Ñ HSY correspondingly.

In this section’s remainder, we formally connect the monad HS with the monad H,
the latter introduced in our previous work and used for providing a semantics
to the functional language HybCore. In the following section we provide a
semantics for the current imperative language via the monad HS . Specifically,
in this section we will show how to build H from HS by considering additional
semantic ingredients on top of the latter.

Let us subsequently write ηS , ♣--q✍S and ♣--q✿S for the unit, the Kleisli lifting
and the Elgot iteration of HS . Note that S,X ÞÑ HSX is a parametrized monad
in the sense of Uustalu [35], in particular HS is functorial in S and for every
f : S Ñ S✶, Hf : HS Ñ HS✶ is a monad morphism.

Then we introduce the following technical natural transformations ι : HSX Ñ
X ❩ ♣S ❩ {❑}q and τ : HS❩YX Ñ HSX. First, let us define ι:

ι♣I, e, xq ✏

ß
inr inl e0, if I ✘ ∅
inlx, otherwise

ι♣I, eq ✏

ß
inr inl e0, if I ✘ ∅
inr inr❑, otherwise

In words: ι returns the initial point for non-zero length trajectories, and otherwise
returns either an accompanying value from X or ❑ depending on that if the given
trajectory is convergent or divergent. The functor ♣--q ❩E for every E extends to
a monad, called the exception monad. The following is easy to show for ι.

Lemma 1. For every S, ι : HS Ñ ♣--q ❩ ♣S ❩ {❑}q is a monad morphism.

Next we define τ : HS❩YX Ñ HSX:

τ♣I, e, xq ✏

ß
〈I, e, x〉, if I ✏ I ✶

〈I ✶, e✶〉, otherwise
τ♣I, eq ✏ 〈I ✶, e✶〉

where 〈I ✶, e✶〉 is the largest such trajectory that for all t P I ✶, et ✏ inl e✶t.
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Jx :✏ tK♣σq ✏ η♣σ▽rtσ④xsq

Jx̄✶ ✏ ū for tK♣σq ✏ 〈r0, tσq, λt . σ▽rφσ♣tq④x̄s, σ▽rφσ♣tσq④x̄s〉

Jp ; qK♣σq ✏ JqK✍♣JpK♣σqq

Jif b then p else qK♣σq ✏ JpK♣σq ⊳ bσ ⊲ JqK♣σq

Jwhile b do { p }K♣σq ✏ ♣λσ. ♣Ĥ inrq♣JpK♣σqq ⊳ bσ ⊲ η♣inlσqq✿♣σq

Fig. 3: Denotational semantics.

Lemma 2. For all S and Y , τ : HS❩Y Ñ HS is a monad morphism.

We now arrive at the main result of this section.

Theorem 3. The correspondence S ÞÑ HSS extends to an Elgot monad as
follows:

η♣x P Sq ✏ ηS♣xq,

♣f : X Ñ HSSq
✍ ✏

(

HXX
Hι✶☎f id

ÝÝÝÝÑ HS❩{❑}X
τ
ÝÑ HSX

f✍
SÝÑ HSS

)

,

♣f : X Ñ HS❩X♣S ❩Xqq✿ ✏
(

X
f
✿
S❩XÝÝÝÑ HS❩XS

H
rinl,♣ι✶☎fq✻s

id

ÝÝÝÝÝÝÝÝÑ HS❩{❑}S
τ
ÝÑ HSS

)

.

where ι✶ ✏ rinl, ids ☎ ι : HSS Ñ S ❩ {❑} and ♣--q✻ : ♣X Ñ ♣S ❩ Xq ❩ {❑}q Ñ
♣X Ñ S ❩ {❑}q is the iteration operator of the maybe-monad ♣--q ❩ {❑} (as in
Example 1). Moreover, thus defined monad is isomorphic to H.

Proof (Proof Sketch). It is first verified that the monad axioms are satisfied using
abstract properties of ι and τ , mainly provided by Lemmas 1 and 2. Then the
isomorphism θ : HSS ✕HS is defined as expected: θ♣r0, dq, e, xq ✏ inl〈r0, ds, ê〉
where et ✏ êt for t P r0, dq, êd ✏ x; and θ♣I, eq ✏ inr〈I, e〉. It is easy to see
that θ respects the unit. The fact that θ respects Kleisli lifting amounts to a
(tedious) verification by case distinction. Checking the formula for ♣--q✿ amounts
to transferring the definition of ♣--q✿, as defined in previous work [13], along θ.
See the full proof in [15]. ❬❭

6 Soundness and Adequacy

Let us start this section by providing a denotational semantics to our language
using the results of the previous section. We will then provide a soundness
and adequacy result that formally connects the thus established denotational
semantics with the operational semantics presented in Section 3.

First, consider the monad in (3) and fix S ✏ ❘
X . We denote the obtained

instance of HS as Ĥ . Intuitively, we interpret a program p as a map JpK : S Ñ ĤS

which given an environment (a map from variables to values) returns a trajectory
over S. The definition of JpK is inductive over the structure of p and is given
in Figure 3.
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In order to establish soundness and adequacy between the small-step opera-
tional semantics and the denotational semantics, we will use an auxiliary device.
Namely, we will introduce a big-step operational semantics that will serve as
midpoint between the two previously introduced semantics. We will show that
the small-step semantics is equivalent to the big-step one and then establish
soundness and adequacy between the big-step semantics and the denotational one.
The desired result then follows by transitivity. The big-step rules are presented in
Figure 4 and follow the same reasoning than the small-step ones. The expression
p, σ, t ⇓ r, σ✶ means that p paired with σ evaluates to r, σ✶ at time instant t.

(diff-stop⇓)
t ➔ sσ

x̄✶ ✏ t̄ for s , σ , t ⇓ stop , σ▽rφσ♣tq④x̄s

(diff-skip⇓)
x̄✶ ✏ t̄ for t , σ , tσ ⇓ skip , σ▽rφσ♣tσq④x̄s

(asg⇓)
x :✏ t , σ , 0 ⇓ skip , σ▽rtσ④xs

(seq-stop⇓)
p , σ , t ⇓ stop , σ✶

p ; q , σ , t ⇓ stop , σ✶

(seq-skip⇓)
p , σ , t ⇓ skip , σ✶ q , σ✶ , t✶ ⇓ r , σ✷

p ; q , σ , t� t✶ ⇓ r , σ✷
♣r P {stop, skip}q

(if-true⇓)
bσ ✏ ❏ p , σ , t ⇓ r , σ✶

if b then p else q , σ , t ⇓ r , σ✶
♣r P {stop, skip}q

(if-false⇓)
bσ ✏ ❑ q , σ , t ⇓ r , σ✶

if b then p else q , σ , t ⇓ r , σ✶
♣r P {stop, skip}q

(wh-true⇓)
bσ ✏ ❏ p ; while b do { p } , σ , t ⇓ r , σ✶

while b do { p } , σ , t ⇓ r , σ✶
♣r P {stop, skip}q

(wh-false⇓)
bσ ✏ ❑

while b do { p } , σ , 0 ⇓ skip , σ

Fig. 4: Big-step Operational Semantics

Next, we need the following result to formally connect both styles of opera-
tional semantics.

Lemma 3. Given a program p, an environment σ and a time instant t

1. if p , σ , t Ñ p✶ , σ✶ , t✶ and p✶ , σ✶ , t✶ ⇓ skip , σ✷ then p , σ , t ⇓ skip , σ✷;
2. if p , σ , t Ñ p✶ , σ✶ , t✶ and p✶ , σ✶ , t✶ ⇓ stop , σ✷ then p , σ , t ⇓ stop , σ✷.

Proof. The proof follows by induction over the derivation of the small step
relation. ❬❭

Theorem 4. The small-step semantics and the big-step semantics are related as
follows. Given a program p, an environment σ and a time instant t
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1. p , σ , t ⇓ skip , σ✶ iff p , σ , t Ñ✍ skip , σ✶ , 0;
2. p , σ , t ⇓ stop , σ✶ iff p , σ , t Ñ✍ stop , σ✶ , 0.

Proof. The right-to-left direction is obtained by induction over the length of the
small-step reduction sequence using Lemma 3. The left-to-right direction follows
by induction over the proof of the big-step judgement using Proposition 1. ❬❭

Finally, we can connect the operational and the denotational semantics in the
expected way.

Theorem 5 (Soundness and Adequacy). Given a program p, an environ-
ment σ and a time instant t

1. p , σ , t Ñ✍ skip , σ✶ , 0 iff JpK♣σq ✏ ♣h : r0, tq Ñ ❘
X , σ✶q;

2. p , σ , t Ñ✍ stop , σ✶ , 0 iff either JpK♣σq ✏ ♣h : r0, t✶q Ñ ❘
X , σ✷q or JpK♣σq ✏

h : r0, t✶q Ñ ❘
X , and in either case with t✶ → t and h♣tq ✏ σ✶.

Here, “soundness” corresponds to the left-to-right directions of the equivalences
and “adequacy” to the right-to-left ones.

Proof. By Theorem 4, we equivalently replace the goal as follows:

1. p , σ , t ⇓ skip , σ✶ iff JpK♣σq ✏ ♣h : r0, tq Ñ ❘
X , σ✶q;

2. p , σ , t ⇓ stop , σ✶ iff either JpK♣σq ✏ ♣h : r0, t✶q Ñ ❘
X , σ✷q or JpK♣σq ✏

h : r0, t✶q Ñ ❘
X , and in either case with t✶ → t and h♣tq ✏ σ✶.

Then the “soundness” direction is obtained by induction over the derivation of
the rules in Fig. 4. The “adequacy” direction follows by structural induction over
p; for while-loops, we call the fixpoint law rη, f ✿s✍ ☎ f ✏ f ✿ of Elgot monads. ❬❭

7 Implementation

This section presents our prototype implementation – Lince – which is available
online both to run in our servers and to be compiled and executed locally
(http://arcatools.org/lince). Its architecture is depicted in Figure 5. The
dashed rectangles correspond to its main components. The one on the left
(Core engine) provides the parser respective to the while-language and the
engine to evaluate hybrid programs using the small-step operational semantics
of Section 3. The one on the right (Inspector) depicts trajectories produced
by hybrid programs according to parameters specified by the user and provides
an interface to evaluate hybrid programs at specific time instants (the initial
environment σ : X Ñ ❘ is assumed to be the function constant on zero). As
already mentioned, plots are generated by automatically evaluating at different
time instants the program given as input. Incoming arrows in the figure denote
an input relation and outgoing arrows denote an output relation. The two main
components are further explained below.

Core engine. Our implementation extensively uses the computer algebra tool
SageMath [31]. This serves two purposes: (1) to solve systems of differential
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Fig. 5: Depiction of Lince’s architecture

equations (present in hybrid programs); and (2) to correctly evaluate if-then-
else statements. Regarding the latter, note that we do not merely use predicate
functions in programming languages for evaluating Boolean conditions, essentially
because such functions tend to give wrong results in the presence of real numbers
(due to the finite precision problem). Instead of this, Lince uses SageMath

and its ability to perform advanced symbolic manipulation to check whether
a Boolean condition is true or not. However, note that this will not always
give an output, fundamentally because solutions of linear differential equations
involve transcendental numbers and real-number arithmetic with such numbers is
undecidable [20]. We leave as future work the development of more sophisticated
techniques for avoiding errors in the computational evaluation of hybrid programs.

Inspector. The user interacts with Lince at two different stages: (a) when
inputting a hybrid program and (b) when inspecting trajectories using Lince’s
output interfaces. The latter case consists of adjusting different parameters for
observing the generated plots in an optimal way.

Event-triggered programs. Observe that the differential statements x✶
1
✏

t, . . . , x✶
n
✏ t for t are time-triggered : they terminate precisely when the instant

of time t is achieved. In the area of hybrid systems it is also usual to consider
event-triggered programs: those that terminate as soon as a specified condition
ψ becomes true [38,6,11]. So we next consider atomic programs of the type
x✶
1
✏ t, . . . , x✶

n
✏ t until ψ where ψ is an element of the free Boolean algebra

generated by t ↕ s and t ➙ s where t, s P LTerm♣X q, signalling the termination
of the program. In general, it is impossible to determine with exact precision
when such programs terminate (again due to the undecidability of real-number
arithmetic with transcendental numbers). A natural option is to tackle this
problem by checking the condition ψ periodically, which essentially reduces event-
triggered programs into time-triggered ones. The cost is that the evaluation
of a program might greatly diverge from the nominal behaviour, as discussed
for instance in documents [4,6] where an analogous approach is discussed for
the well-established simulation tools Simulink and Modelica. In our case, we
allow programs of the form x✶

1
✏ t, . . . , x✶

n
✏ t untilǫ ψ in the tool and define

them as the abbreviation of while✥ψ do { x✶
1
✏ t, . . . , x✶

n
✏ t for ǫ }. This sort

of abbreviation has the advantage of avoiding spurious evaluations of hybrid
programs w.r.t. the established semantics. We could indeed easily allow such
event-triggered programs natively in our language (i.e. without recurring to
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Fig. 6: Position of the bouncing ball over time (plot on the left); zoomed in position of
the bouncing ball at the first bounce (plot on the right).

abbreviations) and extend the semantics accordingly. But we prefer not to do this
at the moment, because we wish first to fully understand the ways of limiting
spurious computational evaluations arising from event-triggered programs.

Remark 3. Simulink and Modelica are powerful tools for simulating hybrid
systems, but lack a well-established, formal semantics. This is discussed for
example in [3,9], where the authors aim to provide semantics to subsets of
Simulink and Modelica. Getting inspiration from control theory, the language
of Simulink is circuit-like, block-based; the language of Modelica is acausal
and thus particularly useful for modelling electric circuits and the like which are
traditionally modelled by systems of equations.

Example 3 (Bouncing Ball). As an illustration of the approach described above
for event-triggered programs, take a bouncing ball dropped at a positive height p
and with no initial velocity v. Due to the gravitational acceleration g, it falls to
the ground and bounces back up, losing part of its kinetic energy in the process.
This can be approximated by the following hybrid program

♣p✶ ✏ v, v✶ ✏ g until0.01 p ↕ 0❫ v ↕ 0q ; ♣v :✏ v✂✁0.5q

where 0.5 is the dampening factor of the ball. We now want to drop the ball from
a specific height (e.g. 5 meters) and let it bounce until it stops. Abbreviating
the previous program into b, this behaviour can be approximated by p :✏ 5 ; v :✏
0 ; while true do { b }. Figure 6 presents the trajectory generated by the ball
(calculated by Lince). Note that since ǫ ✏ 0.01 the ball reaches below ground,
as shown in Figure 6 on the right. Other examples of event- and time-triggered
programs can be seen in Lince’s website.

8 Conclusions and future work

We introduced small-step and big-step operational semantics for hybrid programs
suitable for implementation purposes and provided a denotational counterpart via
the notion of Elgot monad. These semantics were then linked by a soundness and
adequacy theorem [37]. We regard these results as a stepping stone for developing
computational tools and techniques for hybrid programming; which we attested
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with the development of Lince. With this work as basis, we plan to explore the
following research lines in the near future.
Program equivalence. Our denotational semantics entails a natural notion of
program equivalence (denotational equality) which inherently includes classical
laws of iteration and a powerful uniformity principle [33], thanks to the use
of Elgot monads. We intend to further explore the equational theory of our
language so that we can safely refactor/simplify hybrid programs. Note that
the theory includes equational schema like ♣x :✏ a ; x :✏ bq ✏ x :✏ b and
♣wait a ; wait bq ✏ wait ♣a � bq thus encompassing not only usual laws of
programming but also axiomatic principles behind the notion of time.
New program constructs. Our while-language is intended to be as simple as
possible whilst harbouring the core, uncontroversial features of hybrid program-
ming. This was decided so that we could use the language as both a theoretical
and practical basis for advancing hybrid programming. A particular case that we
wish to explore next is the introduction of new program constructs, including e.g.
non-deterministic or probabilistic choice and exception operations raise♣excq.
Denotationally, the fact that we used monadic constructions readily provides a
palette of techniques for this process, e.g. tensoring and distributive laws [22,23].
Robustness. A core aspect of hybrid programming is that programs should
be robust : small variations in their input should not result in big changes in
their output [32,21]. We wish to extend Lince with features for detecting non-
robust programs. A main source of non-robustness are conditional statements
if b then p else q: very small changes in their input may change the validity of
b and consequently cause a switch between (possibly very different) execution
branches. Currently, we are working on the systematic detection of non-robust
conditional statements in hybrid programs, by taking advantage of the notion of
δ-perturbation [20].
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